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Compressed Sensing (CS): Solving for an unknown signal
x of dimensionality NV from some set of observations y of
dimensionality M << N,

w,, ~ N(0,A),

y = dx + w, (AWGN)

given that x is K- sparse, 1.e. containing K non-zero entries,

with (I)/ﬂ: NN( 3 \/—)

Convex Approach: Approximate an ¢, semi-norm regulariza-
tion via a convex relaxation to the ¢; norm. Solving

arg min|ly — @x[3 + Allx] |1 (LASSO)

recovers x exactly for sufficient M > K, as shown in the early
CS literature.

Probabilistic Approach: The posterior probability is given
by a prior signal model and a stochastic description of the
observation channel. In the case of an AWGN channel,

1 L yp =X Puiw)”

Maximum a Posteriori (MAP): maximize over the posterior
distribution,

A

x = arg maxP(x|y; ®), (MAP)

where (LASSO) can be recovered via MAP estimation with
Py(z;) taken as a Laplace distribution.

Minimum Mean Square Error (MMSE): estimate the average
value of x,

X = /dx xP(x|y; ®). (MMSE)

Exact MMSE estimation is intractable, thus approximate meth-
ods are required. In the variational Bayesian approach, one
approximates the posterior as fully factorized. A more accurate
approximation is obtained via belief propagation (BP).
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CASE I: NON-ZERO MEAN
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A non-zero constant is added to all projections such that

L v o1
2N (o)

Experiments are conducted for N = 10%, p = 0.2, A = 10~8
and o = 0.5. For even small ~, parallel AMP fails to converge
for this problem (which is outside the region of successful ¢,
recovery.) SWAMP, however, is robust to 7.

\_

Construction: Using a factor graph construction, we can write
a message passing algorithm via BP to approximate a factor-
ization of the posterior.

P(y|x; ®)

Reducing Complexity: If the entries
of ® are uncorrelated and have mag-

nitudes which scale as O(1/v/N), i.e.
exhibiting weak interactions, one can
write an approximate message passing
(AMP) [1] on the variables and fac-
tors, O(M + N), rather than perform-

ing BP on the edges of the factor graph,
O(MN) [2].
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Non-convex Prior: When x is K-sparse, a non-convex prior
can provide superior performance to ¢; regularization. For
example, the Gauss-Bernoulli (GB) prior,

. 2\ _ , 2
Po(xi,p,f,U ) — (1_10)5(33’&)4_10’/\/‘(33@7570- )7 (GB)
provides state-of-the-art reconstruc-
& tion performance for K-sparse sig-
S 4 nals. We can observe this by looking
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at the phase transition performance, de-
o AAT S noting regions of successful and un-
successful recovery according to the
parameters (« = M /N,p = K/N).
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Breaking AMP: While AMP

< shows distinct advantages for

sparse reconstruction, when ¢

does not meet our assumptions

x( the AMP fixed-point iteration

can fail to converge, and in fact,

can wildly diverge. This severely

limits its potential application
to many practical problems.

Parallel AMP(GB) ™.

Swept Update: Following from the sequential re-
laxed BP proposed in [3], we attempt the same
with AMP. By deriving the proper time indexing,
we produce a sequential, or swept, AMP update.
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The sequential update on the variables avoids the error
introduced by the parallel updates when ® does not match our
statistical assumption of wide-scale and weak interactions.

Algorithm 1 THE SWAMP ALGORITHM

InPU—t: Y, (I)/ A/ Qpriorr tmax; €

t<0

Initialize {a(®),v(®)}, {0 N+1) v (O: N+
while ¢ <t and [at®t) —a®) | > ¢ do

for u = 1ton0
g witi D

G-SwWAMP: Additionally,
as in GAMP [4], SWAMP

can be written to work

on any generalized linear e ﬁj;@; 0
problem of the form ) !

end for
S < Permute([1,2,..., NJ)
fork=1to N do

— @X 14 Sk .
y fOUt ( ) ’ EZZ(H_D = [Zu A—l—f(zi )]
. . R,Et—H) (t) + 22 (t+1) z (I)u Yu w(( +1; k))
where f,.(-) is a stochastic o
o (ROFD 520+

model of the output channel.
This is accomplished easily
by the appropriate change
of the updates to g, and X7.

for u =1,m do
Vﬂ(t—f—l;k—f—l) - V(t+1 k) n (I);Qu‘ (Uz(t+1) . UZ@)
wffﬂ;kﬂ) “ lgt+1 ) + D (a§t+1) - az(-t))
t+1; k+1 t+1; k
O ey
end for
end for

t+—t+1
end while

CASE II: CORRELATIONS
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The projection is constructed to be correlated by multiplying
two random matrices, P € R %% and Q € R®**¥ for R = 1N,

1
O = NPQ Pk, Qri ~ N(0,1).

This problem is closely related to sparse linear regression (or
feature selection), where ® represents some observed set of
features which may exhibit strong correlations. AMP diverges

in such cases, but SWAMP is robust to these correlations. For

\these experiments N = 1024, p = 0.2, « = 0.6, and A = 1075,
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CASE III: GROUP TESTING

0.7} |m SWAMP Group testing and experiment
O BP

0.6f 1 | pooling are another linear prob-
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with each row summing to a
fixed value. In these experi-

3 04 05

0.0 01 0

20 ments, the rows sum to 7, mak-

Pow ing ® very sparse. AMP can-

1017 SwAMP (dense) | | not solve such problems, while

P SWAMP (sparse) | SWAMP matches the perfor-

z 10 * | mance of BP-based solutions

£ * | [6]. Additionally, SwAMP

1071 S | can be written efficiently for

L sparse ®, approaching the per-
T ' w12 formance of parallel AMP.
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CASE IV: ONE-BIT CS

Since SWAMP can be easily adapted to general output channels,
we investigate its usefulness for one-bit compressed sensing,

y = sign(®x),

for & with a non-zero mean (as in Case I).
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We conduct reconstruction experiments for N = 512 averaged
over 200 trials. At top, we compare v = (0 Bayes-optimal
performance (dashed) to the achieved SwWAMP performance
at v = 20. At bottom, we make comparisons against other
approaches over a for p = 1/8. We see that, even on non-
AWGN channels, SWAMP provides results superior to convex
techniques while remaining robust to the properties of ®.
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