

SWEPT APPROXIMATE MESSAGE PASSING FOR SPARSE ESTIMATION

Compressed Sensing (CS): Solving for an unknown signal x of dimensionality N from some set of observations y of dimensionality $M \ll N$,

ANDRE MANOEL *IF-USP* , FLORENT KRZAKALA *LPS-ENS* , ERIC W. TRAMEL *LPS-ENS* AND LENKA ZDEBOROVÁ *IPhT CEA*

COMPRESSED SENSING & INFERENCE

given that x is K-sparse, i.e. containing K non-zero entries, with $\Phi_{\mu i} \sim \mathcal{N}(0, \frac{1}{\sqrt{N}})$ N).

Convex Approach: Approximate an ℓ_0 semi-norm regularization via a convex relaxation to the ℓ_1 norm. Solving

> arg min $\lim_{\mathbf{x}} ||\mathbf{y} - \Phi \mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_1,$ (LASSO)

recovers x exactly for sufficient $M > K$, as shown in the early | CS literature.

$$
\mathbf{y} = \Phi \mathbf{x} + \mathbf{w}, \quad w_{\mu} \sim \mathcal{N}(0, \Delta), \quad (AWGN)
$$

Probabilistic Approach: The posterior probability is given \vert by a prior signal model and a stochastic description of the observation channel. In the case of an AWGN channel,

$$
P(\mathbf{x}|\mathbf{y}, \Phi) \propto P_0(\mathbf{x}) P(\mathbf{y}|\mathbf{x}; \Phi),
$$

$$
\propto \prod_i P_0(x_i) \prod_{\mu} \frac{1}{\sqrt{2\pi\Delta}} e^{-\frac{(y_\mu - \sum_i \Phi_{\mu i} x_i)^2}{2\Delta}}.
$$

Maximum a Posteriori (MAP): maximize over the posterior distribution,

$$
\hat{\mathbf{x}} = \arg \max_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}; \Phi), \tag{MAP}
$$

where (LASSO) can be recovered via MAP estimation with $|$ $P_0(x_i)$ taken as a Laplace distribution.

of Φ are uncorrelated and have magnitudes which scale as $O(1/\sqrt{2})$ √ $N)$, i.e. exhibiting *weak interactions*, one can write an *approximate* message passing (AMP) [1] on the variables and factors, $O(M + N)$, rather than performing BP on the *edges* of the factor graph, $O(MN)$ [2]. y_1 y_2 y_3 \overline{x}_1 $\overline{x_2}$ $\overline{x_3}$ $\overline{x_4}$ $f(\rm Variables)$ $g(\rm{Factors})$ **Non-convex Prior:** When x is K-sparse, a non-convex prior can provide superior performance to ℓ_1 regularization. For example, the *Gauss-Bernoulli* (GB) prior,

$$
\overline{\mathbf{C}}
$$

provides state-of-the-art reconstruction performance for K-sparse signals. We can observe this by looking at the *phase transition* performance, denoting regions of successful and unsuccessful recovery according to the parameters $(\alpha=M/N,\rho=K/N).$

Minimum Mean Square Error (MMSE): estimate the average value of x,

$$
\hat{\mathbf{x}} = \int d\mathbf{x} \ \mathbf{x} P(\mathbf{x}|\mathbf{y}; \Phi). \tag{MMSE}
$$

MESSAGE PASSING

1, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, "Probabilistic reconstruction in compressed sensing: Algorithms, phase diagrams, and threshold achieving matrices," *Journal of Statistical Mechanics: Theory and Experiment*,

Construction: Using a *factor graph* construction, we can write a message passing algorithm via BP to approximate a factorization of the posterior.

Reducing Complexity: If the entries

$$
P_0(x_i; \rho, \xi, \sigma^2) = (1 - \rho)\delta(x_i) + \rho \mathcal{N}(x_i; \xi, \sigma^2), \quad \text{(GB)}
$$

LINKS

REFERENCES

[1] D. L. Donoho, A. Maleki, and A. Montanari, "Message-passing algorithms for compressed sensing," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 106, no. 45, pp. 18 914–18 919, Nov. 2009.

CASE 0 5 **I: N** 10 **ON** 15 **-ZERO MEAN** 0.00 \blacksquare **N.**

-
- vol. 2012, no. 8, p. P08009, August 2012.
-

 y_1

 y_2

 y_3

[3] F. Caltagirone, F. Krzakala, and L. Zdeborová, "On convergence of approximate message passing," in *Information Theory, Proc. IEEE International Symposium on*, Honolulu, HI, June 2014, pp. 1812–1816.

[4] S. Rangan, "Generalized approximate message passing for estimation with random linear mixing," in *Information Theory Proceedings, IEEE International Symposium on*, August 2011, pp. 2168–2172.

[5] P. Zhang, F. Krzakala, M. Mézard, and L. Zdeborová, "Non-adaptive pooling strategies for detection of rare faulty items," in *Communications Workshops, Proc. IEEE International Conference on*, Budapest, Hungary, June 2013, pp. 1409–

Exact MMSE estimation is intractable, thus approximate methods are required. In the variational Bayesian approach, one approximates the posterior as fully factorized. A more accurate approximation is obtained via *belief propagation* (BP). on is obtained vi $D₀$ γ = 10

> This problem is closely related to sparse linear regression (or feature selection), where Φ represents some observed set of features which may exhibit strong correlations. AMP diverges in such cases, but SwAMP is robust to these correlations. For these experiments $N = 1024$, $\rho = 0.2$, $\alpha = 0.6$, and $\Delta = 10^{-8}$.

-
- 1414.

FUNDING

This work has been supported in part by the ERC under the European Union's 7th Framework Programme Grant Agreement 307087-SPARCS, by the Grant DySpaN of "Triangle de la Physique," and by FAPESP under grant 13/01213-8.

SWEPT AMP (SWAMP)

Breaking AMP: While AMP shows distinct advantages for sparse reconstruction, when Φ does not meet our assumptions the AMP fixed-point iteration can fail to converge, and in fact, can *wildly diverge*. This severely limits its potential application to many practical problems.

with each row summing to a fixed value. In these experiments, the rows sum to 7, making Φ very sparse. AMP cannot solve such problems, while SwAMP matches the performance of BP-based solutions [5]. Additionally, SwAMP can be written efficiently for sparse Φ , approaching the performance of parallel AMP.

Swept Update: Following from the sequential re-BP proposed in [3], we attempt the same with AMP. By deriving the proper time indexing, we produce a sequential, or *swept*, AMP update.

We conduct reconstruction experiments for $N = 512$ averaged over 200 trials. At top, we compare $\gamma = 0$ Bayes-optimal performance (dashed) to the achieved SwAMP performance at $\gamma = 20$. At bottom, we make comparisons against other approaches over α for $\rho = 1/8$. We see that, even on non-AWGN channels, SwAMP provides results superior to convex techniques while remaining robust to the properties of Φ.


```
\mathbf{y} = f_{\text{out}}(\Phi \mathbf{x}),
```
The sequential update on the variables avoids the error introduced by the parallel updates when Φ does not match our statistical assumption of wide-scale and weak interactions.

G-SwAMP: Additionally, as in GAMP [4], SwAMP can be written to work on any generalized linear problem of the form

where $f_{\text{out}}(\cdot)$ is a stochastic model of the output channel. This is accomplished easily by the appropriate change of the updates to g_{μ} and Σ_i^2 $\frac{2}{i}$.

Algorithm 1 THE SWAMP ALGORITHM **Input:** y , Φ , Δ , θ _{prior}, t_{max} , ε $t \leftarrow 0$ $\text{Initialize } \big\{ \mathbf{a}^{(0)},\mathbf{v}^{(0)} \big\}$, $\big\{ \omega^{(0; \, N+1)},\mathbf{V}^{(0; \, N+1)} \big\}$ **while** $t < t_{\text{max}}$ and $\|\mathbf{a}^{(t+1)} - \mathbf{a}^{(t)}\| > \varepsilon$ do **for** $\mu = 1$ **to** M **do** $g^{(t)}_{\mu} \leftarrow$ $y_\mu-{\omega}^{(t;\,N+1)}_\mu$ $\Delta + V^{(t; N+1)}_{\mu}$ $V^{(t+1;\,1)}_{\mu} \leftarrow \sum_{i} \Phi_{\mu i}^{2} v^{(t)}_{i}$ i $\omega^{(t+1;\,1)}_{\mu} \gets \sum_i \Phi_{\mu i} a^{(t)}_i - V_{\mu}^{(t+1;\,1)} g^{(t)}_{\mu}$ μ **end for** $\mathbf{S} \leftarrow \text{Permute}([1, 2, \dots, N])$ for $k = 1$ to N do $i \leftarrow S_k$ $\Sigma_i^{2^{(t+1)}} \leftarrow$ \sum_{μ} $\Phi_{\mu i}^2$ $\Delta + V^{(t+1; k)}_{\mu}$ 1^{-1} $R_i^{(t+1)} \leftarrow a_i^{(t)} + \sum_i^{2(t+1)} \sum_{\mu} \Phi_{\mu i} \frac{y_{\mu} - \omega_{\mu}^{(t+1; k)}}{\Delta + V_{\mu}^{(t+1; k)}}$ $\Delta + V^{(t+1; k)}_{\mu}$ $a_i^{(t+1)} \leftarrow f_1(R_i^{(t+1)}$ $\sum_{i}^{(t+1)}, \sum_{i}^{2}$ $(t+1)$; θ_{prior}) \overline{v} $f_i^{(t+1)} \leftarrow f_2(R_i^{(t+1)}$ $\mathbb{E}_i^{(t+1)}, \Sigma_i^2$ $(t+1)$; θ_{prior}) for $\mu = 1, m$ do $V_{\mu}^{(t+1; k+1)} \leftarrow V_{\mu}^{(t+1; k)} + \Phi_{\mu i}^{2} (v_{i}^{(t+1)} - v_{i}^{(t)})$ $\binom{(\iota)}{i}$ $\omega^{(t+1;\,k+1)}_\mu \leftarrow \omega^{(t+1;\,k)}_\mu + \Phi_{\mu i} \left(a^{(t+1)}_i - a^{(t)}_i \right)$ $\binom{(\iota)}{i}$ $-g_{\mu}^{(t)}(V_{\mu}^{(t+1; k+1)} - V_{\mu}^{(t+1; k)})$ **end for end for** $t \leftarrow t + 1$ **end while**

all A non-zero constant is added to all projections such that

$$
\Phi_{\mu i} \sim \mathcal{N}\left(\frac{\gamma}{N}, \frac{1}{N}\right).
$$

Experiments are conducted for $N=10^4$, $\rho=0.2$, $\Delta=10^{-8}$ and $\alpha = 0.5$. For even small γ , parallel AMP fails to converge for this problem (which is outside the region of successful ℓ_1 recovery.) SwAMP, however, is robust to γ .

The projection is constructed to be correlated by multiplying \cdot \sim The projection is constructed to be correlated by multiplying two random matrices, $P \in \mathbb{R}^{M \times R}$ and $Q \in \mathbb{R}^{R \times N}$ for $R \triangleq \eta N$,

$$
\Phi = \frac{1}{N}PQ \quad P_{\mu k}, Q_{ki} \sim \mathcal{N}(0, 1).
$$

CASE III: GROUP TESTING

Group testing and experiment pooling are another linear problem of interest. Here,

 $\Phi_{\mu i} \in \{0, 1\},\$

CASE IV: ONE-BIT CS

Since SwAMP can be easily adapted to general output channels, we investigate its usefulness for one-bit compressed sensing,

for Φ with a non-zero mean (as in Case I).

$$
y = sign(\Phi x),
$$

final MSE (dB)

final MSE (dB)