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COMPRESSED SENSING & INFERENCE
Compressed Sensing (CS): Solving for an unknown signal
x of dimensionality N from some set of observations y of
dimensionality M << N ,

y = Φx + w, wµ ∼ N (0,∆), (AWGN)

given that x is K-sparse, i.e. containing K non-zero entries,
with Φµi ∼ N (0, 1√

N
).

Convex Approach: Approximate an `0 semi-norm regulariza-
tion via a convex relaxation to the `1 norm. Solving

arg min
x
||y − Φx||22 + λ||x||1, (LASSO)

recovers x exactly for sufficient M > K, as shown in the early
CS literature.

Probabilistic Approach: The posterior probability is given
by a prior signal model and a stochastic description of the
observation channel. In the case of an AWGN channel,

P (x|y,Φ) ∝ P0(x)P (y|x; Φ),

∝
∏
i

P0(xi)
∏
µ

1√
2π∆

e−
(yµ−

∑
i Φµixi)

2

2∆ .

Maximum a Posteriori (MAP): maximize over the posterior
distribution,

x̂ = arg max
x
P (x|y; Φ), (MAP)

where (LASSO) can be recovered via MAP estimation with
P0(xi) taken as a Laplace distribution.

Minimum Mean Square Error (MMSE): estimate the average
value of x,

x̂ =

∫
dx xP (x|y; Φ). (MMSE)

Exact MMSE estimation is intractable, thus approximate meth-
ods are required. In the variational Bayesian approach, one
approximates the posterior as fully factorized. A more accurate
approximation is obtained via belief propagation (BP).

MESSAGE PASSING
Construction: Using a factor graph construction, we can write
a message passing algorithm via BP to approximate a factor-
ization of the posterior.
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Reducing Complexity: If the entries
of Φ are uncorrelated and have mag-
nitudes which scale as O(1/

√
N), i.e.

exhibiting weak interactions, one can
write an approximate message passing
(AMP) [1] on the variables and fac-
tors, O(M +N), rather than perform-
ing BP on the edges of the factor graph,
O(MN) [2].
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Non-convex Prior: When x is K-sparse, a non-convex prior
can provide superior performance to `1 regularization. For
example, the Gauss-Bernoulli (GB) prior,

P0(xi; ρ, ξ, σ
2) = (1− ρ)δ(xi) + ρN (xi; ξ, σ

2), (GB)

provides state-of-the-art reconstruc-
tion performance for K-sparse sig-
nals. We can observe this by looking
at the phase transition performance, de-
noting regions of successful and un-
successful recovery according to the
parameters (α = M/N, ρ = K/N).
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SWEPT AMP (SWAMP)
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Breaking AMP: While AMP
shows distinct advantages for
sparse reconstruction, when Φ
does not meet our assumptions
the AMP fixed-point iteration
can fail to converge, and in fact,
can wildly diverge. This severely
limits its potential application
to many practical problems.

Swept Update: Following from the sequential re-
laxed BP proposed in [3], we attempt the same
with AMP. By deriving the proper time indexing,
we produce a sequential, or swept, AMP update.
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The sequential update on the variables avoids the error
introduced by the parallel updates when Φ does not match our
statistical assumption of wide-scale and weak interactions.

G-SwAMP: Additionally,
as in GAMP [4], SwAMP
can be written to work
on any generalized linear
problem of the form

y = fout(Φx),

where fout(·) is a stochastic
model of the output channel.
This is accomplished easily
by the appropriate change
of the updates to gµ and Σ2

i .

Algorithm 1 THE SWAMP ALGORITHM

Input: y, Φ, ∆, θprior, tmax, ε
t← 0
Initialize

{
a(0),v(0)

}
, {ω(0;N+1),V(0;N+1)}

while t < tmax and ||a(t+1)−a(t) || > ε do
for µ = 1 to M do

g
(t)
µ ← yµ−ω(t;N+1)

µ
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end for
S← Permute([1, 2, . . . , N ])
for k = 1 to N do
i← Sk

Σ2
i
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[∑
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Φ2
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for µ = 1,m do
V

(t+1; k+1)
µ ← V

(t+1; k)
µ + Φ2

µi (v
(t+1)
i − v(t)
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µ )
end for

end for
t← t+ 1

end while
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A non-zero constant is added to all projections such that

Φµi ∼ N
(
γ

N
,

1

N

)
.

Experiments are conducted for N = 104, ρ = 0.2, ∆ = 10−8

and α = 0.5. For even small γ, parallel AMP fails to converge
for this problem (which is outside the region of successful `1
recovery.) SwAMP, however, is robust to γ.
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SwAMPThe projection is constructed to be correlated by multiplying
two random matrices, P ∈ RM×R and Q ∈ RR×N for R , ηN ,

Φ =
1

N
PQ Pµk, Qki ∼ N (0, 1).

This problem is closely related to sparse linear regression (or
feature selection), where Φ represents some observed set of
features which may exhibit strong correlations. AMP diverges
in such cases, but SwAMP is robust to these correlations. For
these experiments N = 1024, ρ = 0.2, α = 0.6, and ∆ = 10−8.

CASE III: GROUP TESTING
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Group testing and experiment
pooling are another linear prob-
lem of interest. Here,

Φµi ∈ {0, 1} ,

with each row summing to a
fixed value. In these experi-
ments, the rows sum to 7, mak-
ing Φ very sparse. AMP can-
not solve such problems, while
SwAMP matches the perfor-
mance of BP-based solutions
[5]. Additionally, SwAMP
can be written efficiently for
sparse Φ, approaching the per-
formance of parallel AMP.

CASE IV: ONE-BIT CS
Since SwAMP can be easily adapted to general output channels,
we investigate its usefulness for one-bit compressed sensing,

y = sign(Φx),

for Φ with a non-zero mean (as in Case I).
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We conduct reconstruction experiments for N = 512 averaged
over 200 trials. At top, we compare γ = 0 Bayes-optimal
performance (dashed) to the achieved SwAMP performance
at γ = 20. At bottom, we make comparisons against other
approaches over α for ρ = 1/8. We see that, even on non-
AWGN channels, SwAMP provides results superior to convex
techniques while remaining robust to the properties of Φ.


