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Inverse Problems

General Linear Problem: y = g (F'X)

(M x N) (N x 1) (M x 1)
<&
Projection Matrix Signal Channel Measurements
e /id Random ? Prior Model? eCorruption Observed Data
e Underdetermined? ¢ [nformation LoSS
e [ ow Rank? e Noise Model?

e Sparse”?



Ex: Compressed Sensing

y=Fx+w  w, ~N(0A)

CS Problem: How do we obtain x from y and F knowing
g = AWGN & x is K-Sparse”

x=argmin ||x|lo st. [[y—Fx|;<e  (Greedy)

X =argmin ||y — Fx|[; + Allx]]x (LASSO)
Determ/'n/st/c_:

X =

arg max P(x|y, F) (MAP)

x| = /dx x P(x|y, F)

(MMSE)

Probabilistic



An Unwieldy Posterior

Full Posterior
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Graphical Model for Factorization |4l

Variable to Factor Messages Factor to Variable Messages

I PDFs
. Misy, (xz)
. Y1, Fl
. Y2, F2
Yns gl oo
Factors Variables Factors Factors Variables Factors
Prior Coefficients Measurements | Prior Coefficients Measurements

Goal: Produce




Relaxed BP

A — /dﬂ?i ) mi—m(%;)

Parallel Edge lteration
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MMSE Signal Reconstruction!
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r-BP to AMP via TAP

TAP Intuition (Extended Mean-Field)

f F is not sparse and if its entries scale O(1//N), then
message means and variances are nearly independent of
any single edge message in the limit N— e,

{azavz {wuav } {azavz {w,uvv }

<E %

Big Savings: Compute Burden O(aN?) — O((1 + a)N)



Breaking AMP & r-BP

Adding a slight mean

1
o N ()
N = 2048
A=10"°
a=04
po = 0.1
¢~ N(0,1)

1 1
AMP Iteration

The Big Obstacle

AMP diverges when F strays from zero-mean Gaussian /id' !






Some Approaches...
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S-AMP: Approximate Message Passing for
General Matrix Ensembles

Burak Cakmak
Department of Electronic Systems
Aalborg University
9220 Aalborg, Denmark
Email: buc@es.aau.dk

Abstract—In this work we propose a novel iterative estimation
algorithm for linear observation systems called S-AMP whose
fixed points are the stationary points of the exact Gibbs free
energy under a set of (first- and d t i
constraints in the large system limit. S-AMP extends the ap-
proximate message-passing (AMP) algorithm to general matrix
ensembles. The generalization is based on the S-transform (in
free probability) of the spectrum of the measurement matrix.
Furthermore, we show that the optimality of S-AMP follows
directly from its design rather than from solving a separate
optimization problem as done for AMP.

Index Terms—Variational inference; Gibbs Free Energy; Ap-
proximate message passing; S-transform in free probability
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naive mean field approximation. In statistical physics such a
technique is known as the Thouless-Anderson-Palmer (TAP)
correction [3].

The adaptive TAP (ADATAP) mean field theory was intro-
duced in [4]. In ADATAP the form of Onsager reaction term
depends on the measurement matrix, see [4] Eq. (20) & (51)].
Indeed, a connection between ADATAP and AMP has been
recently realized in [5]. The connection is based on some
approximations of the Gibbs free energy, which are derived
using the replica method, see Eq. (10) & (11)] and the
references therein.
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ADAPTIVE DAMPING AND MEAN REMOVAL FOR
THE GENERALIZED APPROXIMATE MESSAGE PASSING ALGORITHM
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ABSTRACT

The generalized approximate message passing (GAMP) algorithm is
an efficient method of MAP or approximate-MMSE estimation of
observed from a noisy version of the transform coefficients z = Ax.
In fact, for large zero-mean i.i.d sub-Gaussian A, GAMP is char-
acterized by a state evolution whose fixed points, when unique, are
optimal. For generic A, however, GAMP may diverge. In this
paper, we propose adaptive-damping and mean-removal strategies
that aim to prevent divergence. Numerical results demonstrate sig-
nificantly enhanced robustness to non-zero-mean, rank-deficient,
column-correlated, and ill-conditioned A.

[cs.IT] 5 Dec 2014

° Institut de Physique Théorique, CEA Saclay, and CNRS URA 2306, 91191 Gif-sur-Yvette, France.

to convert the MMSE or MAP inference problems into a sequence
of tractable scalar inference problems.

GAMP is well motivated in the case that A is a realization of
a large random matrix with i.i.d zero-mean sub-Gaussian entries.
For such A, in the large-system limit (i.e., M, N — oo for fixed
M/N € R;), GAMP is characterized by a state evolution whose
fixed points, when unique, are MMSE or MAP optimal [113]. Fur-
thermore, for generic A, it has been shown [4] that MAP-GAMP’s
fixed points coincide with the critical points of the cost function
and that MMSE-GAMP’s fixed points coincide with those of a Bethe
free entropy [5], as discussed in detail in Section[2.2]

F as a random matrix

ensemble in Free Probabillity.
= Restricted to random matrices.

For genen'c AI howeverI GAMP max not reach its fixed ﬁintsI

Slow FPI, force minimization
of Bethe Free Energy”.

= Requires cost calculation (non-
trivial) at each iteration.

* Krzakala et al, Variational Free Energies for Compressed Sensing, 2014.



Sequential r-BP Update

On Convergence of Approximate Message Passing
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Abstract—Approximate message passing is an iterative algo-
rithm for compressed sensing and related applications. A solid
theory about the performance and convergence of the algorithm
exists for measurement matrices having iid entries of zero mean.
However, it was observed by several authors that for more general
matrices the algorithm often encounters convergence problems.
In this paper we identify the reason of the non-convergence for
measurement matrices with iid entries and non-zero mean in
the context of Bayes optimal inference. Finally we demonstrate

The structurally simplest case where AMP fails to converge
appears to be when the measurement matrix F' has iid entries
of non-zero mean. This problem was noticed by several
authors, e.g. [3], [11], and fixed in the implementations by
removing the mean of the matrix. Indeed, the average of
element of the measurement vector y reads

_ 1 1
<I" numerically that when the iterative update is changed from Y= Zyu = Z (M ZF m‘) Zi - (2)
= parallel to sequential the convergence is restored. 7 i I

Why does parallel update fail?

CZK2014: Solution path can absorb small amounts of
instability in the parallel update...but too much prevents
convergence!




Sequential r-BP Update

Updating one random edge at a time...

MSE
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from Caltagirone et al, On Convergence of Approximate Message Passing, 2014.
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Our Proposal: Swept AMP (SWAMP) | Jifi

Idea:
Apply TAP to Sequential r-BP {a;, vi} {wu: Vi

{wp, Viu}

Trick: Convergent Alg. requires
re-derivation of time indices!



Case |I: Non-zero Mean

N = 10* ST
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Case |I: Non-zero Mean
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Case ll: Correlations & Low Rank jilik

N = 10° > Yoo = iP
p=02 06— 4 c?’\@"’/ s | N ¢
a=06 A A P Qri ~ N (0,1)
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Case lI: Correlations & Low Rank! 4k
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Case lll: Group Testing

0.7f
0.6f
0.5¢

. SWAMP

O

BP
L1
Bayes opt.

Sparse Matrices
Works for
group testing, too!



Performance Impact: not so bad'!

10° - SWAMP (dense)

| % SwAMP (sparse)

* AMP
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Case IV: One-bit CS

T .
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Sequential Approach to AMP

v Avoids divergence in many cases

v Works even with TAP assumptions explicitly violated
= Some cost In efficiency over parallel AMP

Open Questions

e What is the set of problems for which it doesn’t work”

e |s parallel FP-iteration doomed for wide class of problems
w/o fundamental changes (i.e. S-AMP) ?




SPHINX @ENS

Statistical PHysics of INformaiton eXtraction
«Oy»
Statistical PHysics of INverse compleX sysems

Questions?

Thanks!

Available Online ! Try it out !
+ https://github.com/eric-tramel/SwAMP-Demo



https://github.com/eric-tramel/SwAMP-Demo

Sum-Product AMP Algorithm

In Its Totality...




Algorithm 1 Swept AMP

Input: y, P, A, gprior, Tmax> €

t<0

Initialize {a(®), v(O}, {w O N+1) v (O N+
while ¢ < tp,, and | a®tD) —al®) | > ¢ do

for n =1 to M do
(t) w(t N+1)

9u Ft N+1)
A+V

(t+1;1) ()
Vi — > @m ;

I(LH_I;I) “ Zz q’uzaz('t) V(t+1 l)g(t)
end for
S < Permute([1,2,..., N])
for k =1to N do
1+ Sk

—1
2(t+1) 4’21'

t—|—1 t t-l-l —w

ai“” — f(RETD 20t )

v§t+1) - fz(REH_l), E%(H_l); gprior)

for u =1,mdo

V(t—l—l;k—l—l) “ Vﬂ(t—i—l;k) 4 (I)lgn (v§t+1) _

(t—l—l BH1) (t—l—l-k) L@ .(a§t+1) B
(t) (V(t—i—l k+1) V(t—i—l k))

end for
end for
t—t+1
end while




