Training Restricted Boltzmann Machines via the ThoUless-Anderson-Palmer Free Energy

Marylou Gabriélps-ens, Eric W. Tramel ${ }^{\text {LPS-ENS }}$, Florent Krzakala ${ }^{\text {LPS-ens }}$

EXTENDED MEAN FIELD FOR RBMs

An Expansion for the Ising Model

The Ising Model: Set of binary spins interacting according to the Hamiltonian $H(\mathbf{s})=-\mathbf{a}^{1} \mathbf{s}-\mathbf{s}^{T} \mathbf{W}$ s. Probability of a configuration \mathbf{s} at inverse temperature $\beta=1 / k_{B} T$ is

$$
p(\mathbf{s})=e^{-\beta H(\mathbf{s})} / Z
$$

and the associated free enerygy is $-\beta F=\ln Z$
Legendre transforms: Using a newly introduced auxiliary external field \mathbf{q}, we define $-\beta \widetilde{F}[\mathbf{q}]=\ln \sum_{\mathbf{s}} \mathrm{e}^{-\beta E(\mathbf{s})+\beta \sum_{i} q_{i} s_{i}}$, and compute its Legendre transform as a function of $\mathbf{m}=-\frac{d F}{d q}$

$$
-\beta \Gamma[\mathbf{m}]=-\beta \max _{\mathbf{q}}\left[\tilde{F}[\mathbf{q}]+\sum q_{i} m_{i}\right] .
$$

Inverse transform finally yields an expression of F in terms m .

$$
-\beta F=-\beta \tilde{F}[\mathbf{q}=0]=-\beta \min _{\mathbf{m}}[\Gamma[\mathbf{m}]] .
$$

High temperature expansion: One can expand $-\beta \Gamma[\mathrm{m}]$ round $\beta=0$ at fixed $\mathrm{m}[1,2,3]$ which yields

$$
\begin{aligned}
-\beta F^{\mathrm{EMF}}= & -\left[\mathbf{m}^{T} \ln \mathbf{m}+(1-\mathbf{m})^{T} \ln (1-\mathbf{m})\right] \\
& +\beta\left(\mathbf{a}^{T} \mathbf{m}+\mathbf{m}^{T} \mathbf{W} \mathbf{m}\right)+\frac{\beta^{2}}{2} \sum_{(i, j)} W_{i j}^{2} v_{i} v_{j}+.
\end{aligned}
$$

where $v_{i}=m_{i}-m_{i}^{2}$ and \mathbf{m} is given by order-dependent sel consistency relations

$$
m_{i}=\sigma\left[a_{i}+\sum_{j} W_{i j} m_{j}-W_{i j}^{2}\left(m_{i}-\frac{1}{2}\right) v_{j}+\cdots\right] .
$$

Evaluation of likelihood : Given a set of RBM parameters $\mathbf{a}, \mathrm{b}, \mathrm{W}$, self consistency relations are iterated to get magnetizations

$$
\begin{array}{lll}
m_{j}^{h}[t+1] \leftarrow \sigma\left[b_{j}+\sum_{i} W_{i j} m_{i}^{v}[t]\right. & -\sum_{j} W_{i j}^{2}\left(m_{j}^{h}[t]-\frac{1}{2}\right) v_{i}^{v}[t] & +\sum_{j} W_{i j}^{3}\left(\frac{1}{3}-2 v_{j}^{h}[t]\right) m_{i}^{v}[t] v_{i}^{v}[t], \\
m_{i}^{v}[t+1] \leftarrow \sigma\left[a_{i}+\sum_{j} W_{i j} m_{j}^{h}[t+1]\right. & -\sum_{j} W_{i j}^{2}\left(m_{i}^{v}[t]-\frac{1}{2}\right) v_{j}^{h}[t+1] & \left.+\sum_{j} W_{i j}^{3}\left(\frac{1}{3}-2 v_{i}^{v}[t]\right) m_{j}^{h}[t+1] v_{j}^{h}[t+1]\right] .
\end{array}
$$

Abstract

From which the EMF approximate free energy yields a straigthforward log-likelihood estimate $\ell(\mathbf{a}, \mathbf{b}, \mathbf{W})=-F^{c}(\mathbf{v})+F^{\mathrm{EMP}}$

$$
F^{\mathrm{EMF}}=-S\left(\mathbf{m}^{v}, \mathbf{m}^{h}\right)-\mathbf{a}^{T} \mathbf{m}^{\mathrm{v}}-\mathbf{b}^{T} \mathbf{m}^{\mathrm{h}}-\mathbf{m}^{\mathrm{v} T} \mathbf{W} \mathbf{m}^{\mathrm{h}} \quad+\sum_{i, j} \frac{W_{i j}^{2}}{2} v_{i} v_{j} \quad-\frac{2}{3} W_{i j}^{3} v_{i} v_{j}\left(\frac{1}{2}-m_{i}^{v}\right)\left(\frac{1}{2}-m_{j}^{h}\right)
$$

Learning : Gradients are computed using $\mathbf{m}^{\mathrm{h}}, \mathbf{m}^{\mathrm{v}}$ and $F^{\mathrm{EMF}}: \frac{\partial F^{\mathrm{EMF}}}{\partial W_{i j}}=-m_{i}^{v} m_{j}^{h}+W_{i j} v_{i}^{v} v_{j}^{h}-2 W_{i j}^{2} v_{i}^{v} v_{j}^{h}\left(\frac{1}{2}-m_{i}^{v}\right)\left(\frac{1}{2}-m_{j}^{h}\right)$

EXPERIMENTAL FRAMEWORK

Algorithm : The resulting training algorithm is similar to the contrastive divergence. Sampling steps are replaced with fixed points iterations.

Result 1

Estimates of the per-sample log-likelihood over MNIST test set (left) and over Caltech 101 Silhouette test set (right), normalized by the total number of units, as a function of the number of training epochs.

FUNDING

This work has been supported in part by the ERC under the European Union's $7^{\text {th }}$ Framework Programme Grant Agreement 307087-SPARCS, by the Grant DySpaN of "Triangle de la Physique," and by FAPESP under grant 13/01213-8.

RESULT 2

Fantasy particles generated by a 500 hidden unit RBM after 50 epochs of training on the MNIST datase

For PCD chains are binary samples.

RESULT 3
Test set classification accuracy using logistic regression on the hidden-layer marginal probabilities. As a baseline comparison the classification accuracy of logistic regression performed directly on the data is given as a black dashed line.

