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TRAINING RBMS
Restricted Boltzmann Machines : bipartite energy based
graphical model with visible neurons representing data and
hidden latent neurons.
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Typically,

E(v,h) = −aT v−bT h−vT Wh ,

implying joint pdf

p(v,h;a,b,W) = e−E(v,h)/Z .
Unsupervised learning : maximization of the log-likelihood,

`(a,b,W) = ln
∑
h

p = −F c(v) + F

interpreted as difference between full model free energy F and
data-clamped free energy F c.

F = − lnZ ; F c(v) = aT v−
H∑
j=1

ln
(

1 + e−(bj+(vT W)j)
)
.

Iterative parameter updates in the direction of likelihood gra-
dients, for instance

∂`

∂Wij
= E[vihj |v]− E[vihj ] = −∂F

c(v)

∂Wij
+

∂F

∂Wij
,

Yet, exact computation of full model expectation is intractable.

GRADIENTS EVALUATION TECHNIQUES
Contrastive divergence : Few steps of Gibbs sampling proved
satisfying,
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Mean-field : Replacing stochastic binary variables by deter-
mintic real valued units

p(m
h(k)
j |mv(k)) = σ

(
bj + (mv(k)T W)j

)
E[vihj ] = m

v(k)
i m

h(k)
j (MF-k)

AN EXPANSION FOR THE ISING MODEL
The Ising Model: Set of binary spins interacting according
to the Hamiltonian H(s) = −aT s− sT Ws. Probability of a
configuration s at inverse temperature β = 1/kBT is

p(s) = e−βH(s)/Z ,

and the associated free enerygy is −βF = lnZ .

Legendre transforms: Using a newly introduced auxiliary ex-
ternal field q, we define −βF̃ [q] = ln

∑
s e−βE(s)+β

∑
i qisi , and

compute its Legendre transform as a function of m = −dFdq

−βΓ[m] = −βmax
q

[F̃ [q] +
∑
i

qimi] .

Inverse transform finally yields an expression of F in terms m.

−βF = −βF̃ [q = 0] = −βmin
m

[Γ[m]] .

High temperature expansion: One can expand −βΓ[m]
around β = 0 at fixed m [1, 2, 3] which yields

−βF
EMF

=−
[
mT lnm + (1−m)T ln(1−m)

]
+ β(aT m + mT Wm) +

β2

2

∑
(i,j)

W 2
ij υi υj + · · ·

where υi = mi −m2
i and m is given by order-dependent self

consistency relations

mi = σ
[
ai +

∑
j

Wijmj −W 2
ij

(
mi −

1

2

)
υj + · · ·

]
.

EXTENDED MEAN FIELD FOR RBMS
Evaluation of likelihood : Given a set of RBM parameters a, b, W, self consistency relations are iterated to get magnetizations

mh
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From which the EMF approximate free energy yields a straigthforward log-likelihood estimate `(a,b,W) = −F c(v) + F
EMF

F
EMF

=− S(mv,mh)− aT mv−bT mh−mvT Wmh +
∑
i,j

W 2
ij

2
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Learning : Gradients are computed using mh, mv and F
EMF

: ∂F
EMF

∂Wij
= −mv

im
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EXPERIMENTAL FRAMEWORK
Algorithm : The resulting training algorithm is similar to the
contrastive divergence. Sampling steps are replaced with fixed
points iterations.
Algorithm 1 EMF TRAINING

Input: {v(k)}, lr, numepochs, order, numiter,
Initialize {W,a,b}, {mv,mh}
for epoch = 1 to numepochs do

for k = 1 to numcases do
for t = 1 to numiter do
mh[t+ 1]← update_mh(order)(mv[t],mh[t])

mv[t+ 1]← update_mv(order)(mv[t],mh[t+ 1])
end for
∆a = lr

(
−∇aF

c(v(k)) +∇aF
EMF (mv,mh)

)
∆b = lr

(
−∇bF

c(v(k)) +∇bF
EMF (mv,mh)

)
∆W = lr

(
−∇WF c(v(k)) +∇WFEMF (mv,mh)

)
a← a+∆a
b← b+∆b
W←W+∆W

end for
end for

Parameters of interest :
Experiments test training
quality according to

- EMF order
- number of mh, mv it-

erations
- persistency of itera-

tions

RESULT 1
Estimates of the per-sample log-likelihood over MNIST test set (left) and over Caltech 101 Silhouette test set (right), normalized
by the total number of units, as a function of the number of training epochs.
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RESULT 2
Fantasy particles generated by a 500 hidden unit RBM after 50
epochs of training on the MNIST dataset

For PCD chains are binary samples.
PCD

For EMF methods, chains are real-valued magnetizations.
P-MF

P-TAP2

RESULT 3
Test set classification accuracy using logistic regression on the
hidden-layer marginal probabilities. As a baseline comparison,
the classification accuracy of logistic regression performed
directly on the data is given as a black dashed line.
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