TRAINING RESTRICTED BOLTZMANN MACHINES VIA THE THOULESS-ANDERSON-PALMER FREE ENERGY

TRAINING RBMS

Restricted Boltzmann Machines : bipartite energy based graphical model with *visible* neurons representing data and *hidden* latent neurons. Typically,

 $E(\mathbf{v}, \mathbf{h}) = -\mathbf{a}^T \, \mathbf{v} - \mathbf{b}^T \, \mathbf{h} - \mathbf{v}^T \, \mathbf{W} \, \mathbf{h} \,,$ implying joint pdf

 $p(\mathbf{v}, \mathbf{h}; \mathbf{a}, \mathbf{b}, \mathbf{W}) = e^{-E(\mathbf{v}, \mathbf{h})} / Z$. Unsupervised learning : maximization of the log-likelihood,

$$\ell(\mathbf{a}, \mathbf{b}, \mathbf{W}) = \ln \sum_{\mathbf{h}} p = -F^c(\mathbf{v}) + F$$

interpreted as difference between full model free energy *F* and data-clamped free energy F^c .

$$F = -\ln Z \quad ; \quad F^{c}(\mathbf{v}) = \mathbf{a}^{T} \, \mathbf{v} - \sum_{j=1}^{H} \ln \left(1 + e^{-(b_{j} + (\mathbf{v}^{T} \, \mathbf{W})_{j})} \right) \, .$$

Iterative parameter updates in the direction of likelihood gradients, for instance

$$\frac{\partial \ell}{\partial W_{ij}} = \mathbb{E}[v_i h_j | \mathbf{v}] - \mathbb{E}[v_i h_j] = -\frac{\partial F^c(\mathbf{v})}{\partial W_{ij}} + \frac{\partial F}{\partial W_{ij}}$$

Yet, exact computation of full model expectation is intractable.

GRADIENTS EVALUATION TECHNIQUES

Contrastive divergence : Few steps of Gibbs sampling proved satisfying,

Mean-field : Replacing stochastic binary variables by determintic real valued units

$$p(m_j^{h(k)} | \mathbf{m}^{\mathbf{v}(k)}) = \sigma \left(b_j + (\mathbf{m}^{\mathbf{v}(k)T} \mathbf{W})_j \right)$$
$$\mathbb{E}[v_i h_j] = m_i^{v(k)} m_j^{h(k)}$$
(MF-k)

REFERENCES

[1] A. Georges and J. S. Yedidia. How to expand around mean-field theory using high-temperature expansions. *Journal of* Physics A: Mathematical and General, 24(9):2173–2192, 1999.

[2] T. Plefka. Convergence condition of the TAP equation for the infinite-ranged Ising spin glass model. *Journal of Physics* A: Mathematical and General, 15(6):1971–1978, 1982.

[3] D. J. Thouless, P. W. Anderson, and R. G. Palmer. Solution of 'Solvable model of a spin glass'. *Philosophical Magazine*, 35(3):593–601, 1977.

LINKS

Paper

Source Code

SPHINX Team

MARYLOU GABRIÉ^{LPS-ENS}, ERIC W. TRAMEL^{LPS-ENS}, FLORENT KRZAKALA^{LPS-ENS}

AN EXPANSION FOR THE ISING MODEL

The Ising Model: Set of binary spins interacting according to the Hamiltonian $H(\mathbf{s}) = -\mathbf{a}^T \mathbf{s} - \mathbf{s}^T \mathbf{W} \mathbf{s}$. Probability of a configuration s at inverse temperature $\beta = 1/k_B T$ is

$$p(\mathbf{s}) = e^{-\beta H(\mathbf{s})} / Z \,,$$

and the associated free energy is $-\beta F = \ln Z$.

Legendre transforms: Using a newly introduced auxiliary external field **q**, we define $-\beta \tilde{F}[\mathbf{q}] = \ln \sum_{\mathbf{s}} e^{-\beta E(\mathbf{s}) + \beta \sum_{i} q_i s_i}$, and compute its Legendre transform as a function of $\mathbf{m} = -\frac{dF}{d\mathbf{q}}$

$$-\beta\Gamma[\mathbf{m}] = -\beta \max_{\mathbf{q}} [\tilde{F}[\mathbf{q}] + \sum_{i} q_{i}m_{i}].$$

Inverse transform finally yields an expression of *F* in terms **m**.

$$-\beta F = -\beta \tilde{F}[\mathbf{q}=0] = -\beta \min_{\mathbf{m}}[\Gamma[\mathbf{m}]].$$

High temperature expansion: One can expand $-\beta\Gamma[\mathbf{m}]$ around $\beta = 0$ at fixed m [1, 2, 3] which yields

$$-\beta F^{\text{EMF}} = -\left[\mathbf{m}^T \ln \mathbf{m} + (1 - \mathbf{m})^T \ln(1 - \mathbf{m})\right]$$
$$+ \beta (\mathbf{a}^T \mathbf{m} + \mathbf{m}^T \mathbf{W} \mathbf{m}) + \frac{\beta^2}{2} \sum_{(i,j)} W_{ij}^2 v_i v_j + \cdots$$

where $v_i = m_i - m_i^2$ and m is given by order-dependent self consistency relations

$$m_i = \sigma \left[a_i + \sum_j W_{ij} m_j - W_{ij}^2 \left(m_i - \frac{1}{2} \right) v_j + \cdots \right].$$

RESULT 1

Estimates of the per-sample log-likelihood over MNIST test set (left) and over Caltech 101 Silhouette test set (right), normalized by the total number of units, as a function of the number of training epochs.

FUNDING

This work has been supported in part by the ERC under the European Union's 7th Framework Programme Grant Agreement 307087-SPARCS, by the Grant DySpaN of "Triangle de la Physique," and by FAPESP under grant 13/01213-8.

EXTENDED MEAN FIELD FOR RBMS

From which the EMF approximate free energy yields a straigthforward log-likelihood estimate $\ell(\mathbf{a}, \mathbf{b}, \mathbf{W}) = -F^c(\mathbf{v}) + F^{\text{EMF}}$

Learning : Gradients are computed using \mathbf{m}^{h} , \mathbf{m}^{v} and F^{EMF} : $\frac{\partial F^{\text{EMF}}}{\partial W_{ij}} = -m_{i}^{v}m_{j}^{h} + W_{ij}v_{i}^{v}v_{j}^{h} - 2W_{ij}^{2}v_{i}^{v}v_{j}^{h}\left(\frac{1}{2} - m_{i}^{v}\right)\left(\frac{1}{2} - m_{j}^{h}\right)$.

 $\mathbf{a} \leftarrow \mathbf{a} + \Delta \mathbf{a}$ $\mathbf{b} \leftarrow \mathbf{b} + \Delta \mathbf{b}$ $\mathbf{W} \leftarrow \mathbf{W} + \Delta \mathbf{W}$ end for

Evaluation of likelihood : Given a set of RBM parameters a, b, W, self consistency relations are iterated to get magnetizations

$$\mathbf{F}^{\text{EMF}} = -S(\mathbf{m}^{v}, \mathbf{m}^{h}) - \mathbf{a}^{T} \mathbf{m}^{v} - \mathbf{b}^{T} \mathbf{m}^{h} - \mathbf{m}^{vT} \mathbf{W} \mathbf{m}^{h} \qquad + \sum_{i,j} \frac{W_{ij}^{2}}{2} \upsilon_{i} \upsilon_{i}$$

EXPERIMENTAL FRAMEWORK

Algorithm : The resulting training algorithm is similar to the contrastive divergence. Sampling steps are replaced with fixed points iterations.

Parameters of interest : Experiments test training quality according to

- EMF order
- number of m^h, m^v iterations
- persistency of iterations

RESULT 2

Fantasy particles generated by a 500 hidden unit RBM after 50 epochs of training on the MNIST dataset

RESULT 3

Test set classification accuracy using logistic regression on the hidden-layer marginal probabilities. As a baseline comparison, the classification accuracy of logistic regression performed directly on the data is given as a black dashed line.

For PCD chains are binary samples.