

Belief Propagation & Approximations

Discrete Tomography

Eric W. Tramel

19 March 2015

Contributors

Florent KRZAKALA ENS, Univ. P. & M. Curie

Eric W. TRAMEL ENS

Federico RICCI-TERSENGHI Univ. Rome *La Sapienza*

Ovidiu ERSEN Univ. Strasbourg **Simona MOLDOVAN** Univ. Strasbourg

Discrete Tomography

ENS

Density 1 Density 2 Density 3

Tomography Essentially a reconstruction from linear measurements obtained from a sparse set of projections.

$$\mathbf{y} = F\mathbf{x} + \mathbf{w}$$
 possible noise

Application

Material Sciences > Biology/Medic.

Observation at angle θ $\mathbf{y}_{\theta} = \langle F_{\theta}, \mathbf{x} \rangle$

Binary Tomography

(512x512) Binary Phantom

Binary Simplest case, two possible absorption levels, $x_i \in \{s_0, s_1\}$ for ease, map signal to $\{0, 1\}$ and adjust measurements,

$$y_{\mu} = \sum_{i} F_{\mu i} x_{i}$$

$$\downarrow$$

$$y_{\mu}^{b} = \frac{1}{s_{1} - s_{0}} \left(y_{\mu} - s_{0} \sum_{i} F_{\mu i} \right)$$

Binary Tomography

У

Reconstruction?

Leveraging knowledge of image continuity.

Reconstruction

Thresholding

Variational Approach

ENS

Goal Enforce regularity naturally in the optimization.

(Not bootstrapped ex post facto)

e.g. penalize discontinuities in image.

Variational Approach

Total Variation

Convex approach, regularizing to promote a sparse gradient. $\mathrm{TV}(\mathbf{x}) = \sum_{i} |\nabla x_i|$ Solve... argmin $||\mathbf{y} - F\mathbf{x}||_2^2 + \beta TV(\mathbf{x}) + \mathcal{I}_{[0,1]}(\mathbf{x})$ \mathbf{X} Match observations... ...while penalizing discontinuities... ...ensuring proper bounds.

Ex. implementations: gen. forward-backward splitting, FISTA, augmented lagrangian/alternating minimization...

Probabilistic Construction (Gouillart et al, 2013)

We desire to estimate the posterior...

$$P(\mathbf{x}|\mathbf{y},F) = \frac{1}{Z}P(\mathbf{y}|\mathbf{x},F)P(\mathbf{x})$$

$$= \frac{1}{Z}\prod_{\mu} \left[g\left(y_{\mu} - \sum_{i \in \mu} x_{i}\right)e^{J_{\mu}\sum_{(ij) \in \mu} \delta_{x_{i},x_{j}}}\right]$$
For some intractable formalization...
$$...over the product of factors (measurements/lines)...
$$...and \text{ stochastic output function...}$$

$$AWGN \qquad e^{-\frac{1}{2\sigma^{2}}\left(y_{\mu} - \sum_{i \in \mu} x_{i}\right)^{2}}$$

$$...promote regularity according to some constant.$$$$

ENS

Goal A factorized approximation of the posterior allowing for either MAP or MMSE estimation of **x**.

$$Q(\mathbf{x}) = \prod_{i=1}^{N} q(x_i) \approx P(\mathbf{x}|\mathbf{y}, F)$$

Graphical Representation Key to constructing a message passing to accomplish this factorization.

Factors along angle ψ

 y_{μ}

Estimate Posterior via BP Use

a graphical interpretation to construct a message passing.

Factor-variable Messages

 $m_{\mu \to i}(x_i)$ $m_{i \to \mu}(x_i)$

 x_5

Variable-variable Messages

 x_3

 x_4

 x_1

 x_2

$$\eta_{i \to i+1}^{L}(x_i)$$
$$\eta_{i \to i-1}^{R}(x_i)$$

Outgiong messages calculated via *cavity*: product of all incoming *sans* the message coming from the node we are sending to.

Factors along angle ψ

Factors along angle ψ

Factors along angle ψ

Factors along angle ψ

Factors along angle ψ

Variables (pixels)

Factors along angle ψ

Factors along angle ψ

Factors along angle ψ

Variables (pixels)

Factors along angle ψ

Variables (pixels)

Factors along angle ψ

Variables (pixels)

Factors along angle ψ

Factors along angle ψ

Factors along angle ψ

Factors along angle ψ

Factors along angle ψ

$$\alpha = 1/10, \sigma/L = 0.006$$

BP

(Gouillart et al, 2013)

(Gouillart et al, 2013)

$$\alpha = 1/10, \sigma/L = 0.006$$

(Gouillart et al, 2013)

(Gouillart et al, 2013)

From Lines to Lattices...

Why Lines? BP known to be exact on trees. Nice properties!

However each line tied to a factor, resulting in many inner BP calculations and a sequential update.

From Lines to Lattices...

A Lattice? A full model of the entire signal that incorporates local correlations. *(related: MRFs)*

Caution Many tight loops, we cannot expect perfection.

Advantages

- Prior model not tied to the sampling procedure
- Perhaps a more accurate image model
- Adaptable correlation model (edges & weights) that can possibly be trained to exemplars
- Known results from familiar models
- Potentially fewer messages than line model

From Lines to Lattices...

An Ising Model For binary images, we can see that this prior is just a mapping of the square-lattice Ising Model.

$$P(\mathbf{x}) = \frac{1}{\mathcal{Z}} e^{-\mathcal{H}(\mathbf{x})} \qquad x_i \in \pm 1$$

$$\mathcal{H}(\mathbf{x}) = \sum_{\langle i,j \rangle} J_{ij} x_i x_j + \sum_i h_i x_i$$

Some local biasing
Edges & correlation weights

 $O(2dN) < O(4NN_{\theta})$ for $d < N_{\theta}$

However, we cannot use the nice <u>Transfer Matrix</u> approach of the linear model.

Already approximate (LBP), why not approximate more?

Passing on Edges

Passing on Variables (Marginals)

'

MFA as an approximation of Partition

When applying the MFA, we are approximating the intractable partition (via its *Free Energy*)...

$$\mathcal{F} = -\log \mathcal{Z} = \sum_{x_1 \in \{0,1\}} \sum_{x_2 \in \{0,1\}} \cdots \sum_{x_N \in \{0,1\}} -\mathcal{H}(\mathbf{x})$$

...by minimizing

$$\mathcal{F}^{\mathrm{nmf}} = -\mathcal{S}(\mathbf{m}) - \mathcal{H}(\mathbf{m})$$

$$= \sum_{i} \{m_{i} \ln m_{i} + (1 - m_{i}) \ln(1 - m_{i})\} + \sum_{i} h_{i} m_{i} + \sum_{\langle i,j \rangle} J_{ij} m_{i} m_{j}$$
Promoting greater entropy
$$m_{i} \triangleq \langle x_{i} \rangle_{m_{i}}(x_{i})$$

(more general)

Finding the Factorization

Factorize lattice by minimizing MFA Free Energy... ... leading to a *fixed point iteration*.

$$m_i^{(t+1)} = \text{sigmoid}(h_i + \sum_j J_{ij} m_j^{(t)})$$

$$\therefore m_i^* = \text{sigmoid}(h_i + \sum_j J_{ij} m_j^*)$$

Well-known MFA result leaves much to be desired in terms of accuracy.

More moments -> More Accurate

Can use the *Thouless-Anderson-Palmer* (TAP)-type approach, tracking variance, also. Via Pfleka expansion assuming small coupling...

$$\mathcal{F}^{\text{TAP}} = -\mathcal{S}(\mathbf{m}) + \sum_{i} h_{i}m_{i} + \sum_{\langle i,j \rangle} J_{ij}m_{i}m_{j} + \frac{1}{2} \sum_{\langle i,j \rangle} J_{ij}^{2}v_{i}v_{j}$$
$$v_{i} = m_{i} - m_{i}^{2}$$

Which gives the FPI...

$$\therefore m_i^{(t+1)} = \text{sigmoid}(h_i + \sum_j J_{ij} m_j^{(t)} + (0.5 - m_i^{(t-1)}) \sum_j J_{ij}^2 v_i^{(t)})$$

One Step Further

Can we compute the variable-factor messages on the marginals as well?

Approximate Message Passing (AMP)

Used with great success for Compressed Sensing problems and general inference, as well.

- "Simple" FPI
- Direct application of same TAP approximations (but for real variables) to CS factor graph.

Bringing it Together

The full iteration including the BI model factorization...

$$\begin{split} V_{\mu}^{t+1} &= \sum_{i} F_{\mu i}^{2} v_{i}^{t} \\ \omega_{\mu}^{t+1} &= \sum_{i} F_{\mu i} a_{i}^{t} - \frac{V_{\mu}^{t+1}}{\Delta + V_{\mu}^{t}} (y_{\mu} - \omega_{\mu}^{t}) \\ (\Sigma_{i}^{t+1})^{2} &= \left[\sum_{\mu} \frac{F_{\mu i}^{2}}{\Delta + V_{\mu}^{t+1}} \right]^{-1} \\ R_{i}^{t+1} &= a_{i}^{t} + (\Sigma_{i}^{t+1})^{2} \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \omega_{\mu}^{t+1})}{\Delta + V_{\mu}^{t+1}} \\ h_{i}^{t+1} &= \frac{(R^{t+1} - 0.5)}{(\Sigma_{i}^{t+1})^{2}} \\ a_{i}^{t+1} &= \text{sigmoid}(h_{i}^{t+1} + \sum_{j} J_{ij} a^{t} - (0.5 - a^{t-1}) \sum_{j} J_{ij}^{2} v^{t}) \\ v_{i}^{t+1} &= a^{t+1} - (a^{t+1})^{2} \end{split}$$

Standard AMP Iteration

Bringing it Together

The full iteration including the BI model factorization...

$$\begin{split} V_{\mu}^{t+1} &= \sum_{i} F_{\mu i}^{2} v_{i}^{t} \\ \omega_{\mu}^{t+1} &= \sum_{i} F_{\mu i} a_{i}^{t} - \frac{V_{\mu}^{t+1}}{\Delta + V_{\mu}^{t}} (y_{\mu} - \omega_{\mu}^{t}) \\ (\Sigma_{i}^{t+1})^{2} &= \left[\sum_{\mu} \frac{F_{\mu i}^{2}}{\Delta + V_{\mu}^{t+1}} \right]^{-1} \\ R_{i}^{t+1} &= a_{i}^{t} + (\Sigma_{i}^{t+1})^{2} \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \omega_{\mu}^{t+1})}{\Delta + V_{\mu}^{t+1}} \\ R_{i}^{t+1} &= \frac{(R^{t+1} - 0.5)}{(\Sigma_{i}^{t+1})^{2}} \\ a_{i}^{t+1} &= \text{sigmoid}(h_{i}^{t+1} + \sum_{j} J_{ij} a^{t} - (0.5 - a^{t-1}) \sum_{j} J_{ij}^{2} v^{t}) \\ v_{i}^{t+1} &= a^{t+1} - (a^{t+1})^{2} \end{split}$$

Calculate fields from AMP

Bringing it Together

The full iteration including the BI model factorization...

 $J_{ij}^2 v^t$)

$$\begin{split} V_{\mu}^{t+1} &= \sum_{i} F_{\mu i}^{2} v_{i}^{t} \\ \omega_{\mu}^{t+1} &= \sum_{i} F_{\mu i} a_{i}^{t} - \frac{V_{\mu}^{t+1}}{\Delta + V_{\mu}^{t}} (y_{\mu} - \omega_{\mu}^{t}) \\ (\Sigma_{i}^{t+1})^{2} &= \left[\sum_{\mu} \frac{F_{\mu i}^{2}}{\Delta + V_{\mu}^{t+1}} \right]^{-1} \\ R_{i}^{t+1} &= a_{i}^{t} + (\Sigma_{i}^{t+1})^{2} \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \omega_{\mu}^{t+1})}{\Delta + V_{\mu}^{t+1}} \\ h_{i}^{t+1} &= \frac{(R^{t+1} - 0.5)}{(\Sigma_{i}^{t+1})^{2}} \\ a_{i}^{t+1} &= \text{sigmoid}(h_{i}^{t+1} + \sum_{j} J_{ij} a^{t} - (0.5 - a^{t-1}) \sum_{j} v_{i}^{t+1} \\ v_{i}^{t+1} &= a^{t+1} - (a^{t+1})^{2} \end{split}$$

Update Binary Ising Factorization

Bringing it Together

A full iteration including the BI model factorization...

 $V^{t+1}_{\mu} = \sum_{i} F^2_{\mu i} v^t_i$ $\omega_{\mu}^{t+1} = \sum_{i} F_{\mu i} a_{i}^{t} - \frac{V_{\mu}^{t+1}}{\Delta + V_{\mu}^{t}} (y_{\mu} - \omega_{\mu}^{t})$ $(\Sigma_{i}^{t+1})^{2} = \left[\sum_{\mu} \frac{F_{\mu i}^{2}}{\Delta + V_{\mu}^{t+1}}\right]^{-1}$ $R_i^{t+1} = a_i^t + (\Sigma_i^{t+1})^2 \sum_{\mu} F_{\mu i} \frac{(y_\mu - \omega_\mu^{t+1})}{\Delta + V_\mu^{t+1}}$ $h_i^{t+1} = \frac{(R^{t+1} - 0.5)}{(\Sigma_i^{t+1})^2}$ $a_i^{t+1} = \text{sigmoid}(h_i^{t+1} + \sum_j J_{ij}a^t - (0.5 - a^{t-1})\sum_j J_{ij}^2 v^t)$ $v_i^{t+1} = a^{t+1} - (a^{t+1})^2$

Repeat until some criterion met, like

- Uncertainty
- Residual
- Convergence of factorization

TAP-BI + AMP

Bringing it Together

A full iteration including the BI model factorization...

$$\begin{split} V_{\mu}^{t+1} &= \sum_{i} F_{\mu i}^{2} v_{i}^{t} & \text{Som} \\ \omega_{\mu}^{t+1} &= \sum_{i} F_{\mu i} a_{i}^{t} - \frac{V_{\mu}^{t+1}}{\Delta + V_{\mu}^{t}} (y_{\mu} - \omega_{\mu}^{t}) & \text{impr} \\ (\Sigma_{i}^{t+1})^{2} &= \left[\sum_{\mu} \frac{F_{\mu i}^{2}}{\Delta + V_{\mu}^{t+1}} \right]^{-1} & \Delta^{t} \\ R_{i}^{t+1} &= a_{i}^{t} + (\Sigma_{i}^{t+1})^{2} \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \omega_{\mu}^{t+1})}{\Delta + V_{\mu}^{t+1}} \\ h_{i}^{t+1} &= \frac{(R^{t+1} - 0.5)}{(\Sigma_{i}^{t+1})^{2}} \\ a_{i}^{t+1} &= \text{sigmoid}(h_{i}^{t+1} + \sum_{j} J_{ij} a^{t} - (0.5 - a^{t-1}) \sum_{j} J_{ij}^{2} v^{t}) \\ v_{i}^{t+1} &= a^{t+1} - (a^{t+1})^{2} \end{split}$$

Some Nuance One can update noise variance to improve convergence...

$$\Delta^t = \frac{1}{M} ||\mathbf{y} - F\mathbf{a}^t||_2^2$$

ENS

Bringing it Together

A full iteration including the BI model factorization...

$$\begin{split} V_{\mu}^{t+1} &= \sum_{i} F_{\mu i}^{2} v_{i}^{t} \\ \omega_{\mu}^{t+1} &= \sum_{i} F_{\mu i} a_{i}^{t} - \frac{V_{\mu}^{t+1}}{\Delta + V_{\mu}^{t}} (y_{\mu} - \omega_{\mu}^{t}) \\ (\Sigma_{i}^{t+1})^{2} &= \left[\sum_{\mu} \frac{F_{\mu i}^{2}}{\Delta + V_{\mu}^{t+1}} \right]^{-1} \\ R_{i}^{t+1} &= a_{i}^{t} + (\Sigma_{i}^{t+1})^{2} \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \omega_{\mu}^{t+1})}{\Delta + V_{\mu}^{t+1}} \\ h_{i}^{t+1} &= \frac{(R^{t+1} - 0.5)}{(\Sigma_{i}^{t+1})^{2}} \\ a_{i}^{t+1} &= \text{sigmoid}(h_{i}^{t+1} + \sum_{j} J_{ij} a^{t} - (0.5 - a^{t-1}) \sum_{\mu} V_{i}^{t+1} \\ v_{i}^{t+1} &= a^{t+1} - (a^{t+1})^{2} \end{split}$$

Some Nuance Also, one can update the coupling strength...

$$J_{ij}^{t} \triangleq \eta^{t} E_{ij}$$
$$\eta^{t+1} = \frac{1}{N} \sum_{\langle i,j \rangle} J_{i,j}^{t} a_{i}^{t} a_{j}^{t}$$

ENS

Bringing it Together

A full iteration including the BI model factorization...

$$\begin{split} V_{\mu}^{t+1} &= \sum_{i} F_{\mu i}^{2} v_{i}^{t} & \text{Som} \\ \omega_{\mu}^{t+1} &= \sum_{i} F_{\mu i} a_{i}^{t} - \frac{V_{\mu}^{t+1}}{\Delta + V_{\mu}^{t}} (y_{\mu} - \omega_{\mu}^{t}) & \text{be n} \\ (\Sigma_{i}^{t+1})^{2} &= \left[\sum_{\mu} \frac{F_{\mu i}^{2}}{\Delta + V_{\mu}^{t+1}} \right]^{-1} & a^{t} \\ R_{i}^{t+1} &= a_{i}^{t} + (\Sigma_{i}^{t+1})^{2} \sum_{\mu} F_{\mu i} \frac{(y_{\mu} - \omega_{\mu}^{t+1})}{\Delta + V_{\mu}^{t+1}} \\ h_{i}^{t+1} &= \frac{(R^{t+1} - 0.5)}{(\Sigma_{i}^{t+1})^{2}} \\ a_{i}^{t+1} &= \operatorname{sigmoid}(h_{i}^{t+1} + \sum_{j} J_{ij} a^{t} - (0.5 - a^{t-1}) \sum_{j} J_{ij}^{2} v^{t}) \\ v_{i}^{t+1} &= a^{t+1} - (a^{t+1})^{2} \end{split}$$

Some Nuance Damping can be necessary...

$$a^{t+1} = \beta a^t + (1 - \beta)a^{t+1}$$

A Small Experiment...

Target Image

256

Parameters

$$\epsilon = \Delta/L \in [10^{-2}, 10^{-3}]$$

 $\alpha = M/N = N_{\theta}/L \in (0, 0.25]$
 $d = 8$

Small Noise Variance

Large Noise Variance

Looking Forward

ENS

Much work to do...

- What are the effects of learning free parameters?
 - Is there a better update scheme for these?
- Optimal stopping criterion?
- How to choose damping? Adaptive scheme based on free energy?
- Will these changes help high-noise performance?

Looking Forward

Much work to do...

• Extension to Potts...some preliminary work applied to limited-angle electron tomography

Au Bipyramid

Looking Forward

ENS

Much work to do...

• Extension to Potts...some preliminary work applied to limited-angle analytic electron tomography

Carbon

Cobalt

Oxygen

Questions?

Thanks!

Scratch

