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Density 1
Density 2 Tomography Essentially a reconstruction

Density 3 from linear measurements obtained from
’ a sparse set of projections.

Y — Fx —+(W\ possible noise

Application
Material Sciences > Biology/Medic.

Observation at angle 6
Yo — <F97 X>



(512x512) Binary Phantom

Binary Simplest case, two

possible absorption levels,
Ly & {80, 81}

for ease, map signal to {0,1}

and adjust measurements,

Yu = ZF,UJZ:E’L




Reconstruction?

Variational Advantage
Leveraging knowledge of image
continuity.

Reconstruction Thresholding



Goal Enforce regularity
naturally in the optimization.

(Not bootstrapped ex post facto)

e

e.g. penalize discontinuities
N Image.



Total Variation
Convex approach, regularizing to promote a sparse gradient.

Solve...
argmin Hy Fx|3 + BTV(x) + Zjo1)(x

X
Match observahons /
..while penalizing discontinuities..

...ensuring proper bounds.

Ex. implementations: gen. forward-backward splitting, FISTA,
augmented lagrangian/alternating minimization...



Probabilistic Construction (Gouillart et al, 2013)
We desire to estimate the posterior...

P(xly. F) = 2 Pylx F)P(x)

:%H 9 yu_za:i e 2(igyen Owiz
7

1E N

For some intractable /

normalization...

...over the product of factors

(measurements/lines). ..
...and stochastic output function...

AWGN — L (Y= ie, i)
€ 20 ...promote regularity according to
some constant.

Noiseless o (yu -> xz)

e



Goal A factorized approximation of the posterior
allowing for either MAP or I\/II\/ISE estimation of X.

Hq z;) = P(x|y, F)

Graphical Representation Key to constructing a message
passing to accomplish this factorization.
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Variables (pixels)

Q Q Q Each factor measures

one line of pixels.

Factors along angle y Factors along angle 6
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Estimate Posterior via BP Use
Yn a graphical interpretation to construct
a message passing.

Factor-variable Messages
My—i(T4)

M (T)
Outgiong messages calculated via
cavity: product of all incoming sans the

: : message coming from the node we are
Variable-variable Messages sending 1 g‘ ‘
L
M —i+1 ()

77{%—»—1(5157:)
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Variables (pixels)

Yap,3 I I I Yo .3
Yap,2 Yo 2

Y1 Yo.1

Factors along angle y Factors along angle 6



o =1/10,0/L = 0.006:

a=N,/L

(Gouillart et al, 2013)



o =1/10,0/L = 0.006:
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Exact Inexact

However each line tied to a factor, resulting in many inner BP
calculations and a sequential update.



A Lattice? A full model of the entire signal that incorporates
local correlations. (related: MRFs)

Caution Many tight loops, we
cannot expect pertection.

Advantages

Prior model not tied to the sampling procedure
Perhaps a more accurate image model

----- - Adaptable correlation model (edges & weights)
that can possibly be trained to exemplars
Known results from familiar models
Potentially fewer messages than line model



An Ising Model For binary images, we can see that this
prior Is just a mapping of the square-lattice Ising Model.

<1,j> 0 \
/ Some local biasing

Edges & correlation weights
encoded in J.




Potential Efficiency Lattice model
Involves fewer messages between
pixels...

O (2dN) < O (4NNy) for d < N

T

However, we cannot use the nice

ranster Matrix approach of the

near model.

Already approximate (.8r), why
not approximate more?



Passing on Variables
(Marginals)

Passing on Edges

~ Mean-Field Approximation




MFA as an approximation of Partition
When applying the MFA, we are approximating the
intractable partition (via its Free Energy)...

F=—logZ = Z Z Z —H(x)

r1€{0,1} z2€{0,1} rn€{0,1}
...by minimizing
Frml — _S(m) — H(m)
:Z{milnmi (1 —m;)In(1 —my) }+Zh m; + Z He g,

<1,7>

\4

Promoting greater entropy

m; = (x;)
(more general) m; ()



Finding the Factorization
Factorize lattice by minimizing MFA Free Energy...
... leading to a fixed point iteration.

m,gtﬂ) = sigmoid(h; + Z Jijm§.t))
J

c.m; = sigmoid(h; + Z Jijmj)
J

Well-known MFA result leaves much to be desired in terms
of accuracy.



More moments -> More Accurate
Can use the Thouless-Anderson-Palmer (TAP)-type
approach, tracking variance, also. Via Ptleka expansion

assuming small coupling...

FHAP = s Z him; + Z Jigmim; + = Z i ViU;

<1,)> <z,j> l

vi:mi—m?

Which gives the FPI...

— sigmoid(hi -+ Z Jijmg-t) + (0.5 — m?(:t_l)) Z J,,i ,L(t))

J J

m§t+1)



One Step Further
Can we compute the variable-factor messages on the
marginals as well?

{azavz} {wu,V } {a“v’b {w,uav }

== =8

Approximate Message Passing (AMP)
Used with great success for Compressed Sensing problems

and general inference, as well.
e “‘Simple” FPI
e Direct application of same TAP approximations (but for real variables) to CS
factor graph.




Bringing it Together
The full iteration including the Bl model factorization...

V=
Vt—|—1
t—|—1 Z Fma Vt( wz)
2 1 Standard AMP lteration
(D2 = Z =
7 A + Vt—l—l
R+l — t Et+1 2 ZF werl)
) e A_|_VI£—|—1

ht—|—1 L (Rt+1 05)
(B2
ajt! = sigmoid(h{™ + )~ Jija' — (0.5 —a'” Z JZv')

J

’U,Z-H_l _ at—l—l . (at—|—1)2



Bringing it Together
The full iteration including the Bl model factorization...

t+1 _ 2t
Vi = 2 B

4 =3 B AR
A+ng S
ey 3 f B
' ,LA+WH
t+1
t+1 _ ¢ t+142 ,(yﬂ_wu )

LT
a'™ = sigmoid(h! ! + Z Jijat —

J

05—a

,Ut+1 — t+1

i G- = (at+1)2

Calculate fields from AMP

EJQt




Bringing it Together
The full iteration including the Bl model factorization...

t+1 _ 2t
Vi = 2 B

Wit = Z Vu™ (Yp — w},)
A+ng S
ey 3 f B
' —~ A+ VT
t+1
t+1 _ ¢ t+142 ,(yﬂ_wu )

LT

Update
Binary Ising Factorization

aﬁ“ — sigmoid(h’;+1 + Z Jijat — (0.5 —a'~
J

’Ut+1 _ i+l

i G- = (at+1)2

ZJQt




Bringing it Together
A tull iteration including the Bl model factorization...

t+1 _ 2t
Vi = 2 B

t—l—l Z Vt+1 (y o wt)
A+V;g SR
i 2 17 Repeat until some
> = : : : :
s %:MVJ“ criterion met, like
RIH = gt + (323, (Yu _%}:) ° Jncer’[alnty
At * Residual
t+1
pL+ = <R@m)g-5> Convergence of
o = sigmoid(h ! + 3" Jyat — (05— ') S S factorization
J J

’U,Z-H_l _ at—l—l . (at—|—1)2



Bringing it Together
A tull iteration including the Bl model factorization...

t+1 2 t
Vu — E Fm ;
t-l-l M t
Z AL v (W = W)

(Z§+1)2 _ { i
2 AL Vit

7

t+1 _ ¢ t+142 ‘(yu — Y

3
S O An
ajt! = sigmoid(h{™ + )~ Jija' — (0.5 —a'”
J

’U,Z-H_l _ at—l—l . (at—|—1)2

Some Nuance One can
update noise variance to
Improve convergence...

1
A" = MHy—FatH%

EJQt



Bringing it Together
A tull iteration including the Bl model factorization...

Vit = ZFiz vf Some Nuance Also, one can
o yie t update the coupling
Z NS A strength. ..
2o Ji; = n'Ey;
t+1\2 ks
(37)" = XM:A+VJ+1
t t t
(g — ) Z J} jaal
t+1 _ t4+1\2 \Jp p ] J
Rt =al + (S D F ATV <w>
P+l _ (R*T —0.5)
‘ (Z§+1)2 2T
a'™ = sigmoid(h! ! + Sj Jijat — (0.5 — o' 1) Sj ijvt) E
j j

pitl = g+l _ (gt+1)2



Bringing it Together
A tull iteration including the Bl model factorization...

t+1 _ 2t
Vi = 2 B

4 =3 B AR
AV T
(SHH1)2 — Z Fiq;t ~1
: —~ A+ VT
R = af + (352 " F, (Y — ")

e

Some Nuance Damping can
be necessary...

P=pa"+ (1= B)a"

aﬁ“ — sigmoid(h’;+1 + Z Jijat — (0.5 —a'~

J

ZJQt

’U,Z-H_l _ at—l—l . (at—|—1)2



A Small Experiment...
larget Image

Parameters
e=A/Lc[107%,1077]
o= M/N = Ny/L € (0,0.25]
d =&

256



Small Noise Variance

L =256, e =1077

L = 256, e = 10739
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Large Noise Variance
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Much work to do...
 What are the effects of learning free parameters?
* |s there a better update scheme for these?
e Optimal stopping criterion”
 How to choose damping”? Adaptive scheme based on
free energy?
* Will these changes help high-noise pertormance”



Much work to do...
* Extension to Potts...some preliminary work applied to
imited-angle electron tomography

Au Bipyramid



Much work to do...
* Extension to Potts...some preliminary work applied to
imited-angle analytic electron tomography

R
e 5
.

Carbon Cobalt




Questions?

Thanks!




Means, a; Variances, v;

MAP State

Percent Error: 27.40



