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Warm-Up: 12 Balls

Problem: 12 Balls, 11 of which are of equal weight.
One outlier is either heavier or lighter.

Given a balance, what is the least number of
weighings (tests) to identity the outlier
& know it it is heavier or lighter?

A



Group-Testing

Context: U.S.A. is drafting soldiers for WW2, but wants to
weed out syphilitic recruits.

Problem: Blood tests are expensive, and individual testing
IS too cost prohibitive.

Wasserman Test

How can one effectively carry out mass-screening?



Group-Testing

[Dorfman, 1943}

Pool 1

Pool 2

Pool 3

est for a positive result in a mixed-sample
(pooling) and re-test positive pools.




Adaptive v. Non-adaptive

Efficiency: Adaptive testing will always be at least or more efficient
(in number of tests) than non-adaptive testing: makes use of
intermediate information.

Practicality: \What if the “soldier” moves around on assignments?

What if our test destroys the sample?
- Often one cannot take advantage of re-testing.

Non-Adaptive Testing: Requires a priori pooling design to make
the most efficient test schedule that allows accurate inference of
faults without re-testing.



Linear Observation

Assuming that we can model our sampling procedure as
inear, In noiseless setting we have,

observed
samples

y = I'X

D

testing/sampling
design

——

unknown
signal/response

Problem: Knowing samples and the sampling design, can
we know the signal?
Linear Algebra: Only if the system F is invertible (square)

Nyquist: Only if sampled at rate twice the bandwith of x.




Linear Algebra

[Nyquist & LA] For accurate reconstruction of N coefficients,
one reqguires as many samples, M, as coefficients.

y = F'X



Linear Algebra

Undersampling: Our goal is to reduce measurements (M<N).
Removing measurements fromy, F, makes solving for
X Impossible, in general.

y = FX

An entire space of possible solutions: y = F (x +s € Null(F))



Linear Algebra

Undersampling: Our goal is to reduce measurements.
Removing me ) for
X Impossible, 4 :

An entire space of possible solutions: y = F (x + s € Null(F))




Linear Algebra

Prior Knowledge: \We can’t get something for free, but we by
imposing what knowledge we have a prior.

X ’

E.g. Shrinkage... ||x||2 < €

X — (FTF+)\])_ Fly
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Undersampling of Sparse Signals ik

Prior Knowledge: A more interesting/useful case, what about
a sparse prior?

L]
— ><.
L]

y = F'x

K-Sparse: Signal x has K non-zero elements.
p-Dense: Coefficients of X are non-zero with probabillity p.
Support: Location of non-zero elements.



ASIDE: Sparsity & Information

In (very) General: If a signal is interesting or informative, it
probably admits a parsimonious (simple) description.
 Has some identifiable pattern (ordered).
e |s distinguishable from noise (order => not max ent).
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Undersampling of Sparse Signals ik

It support were known a priori, for M>K, the system is in fact
overdetermined, and can be solved exactly in the noiseless

setting! ]
- j S
o ]

y = Fx = Fgxg
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Undersampling of Sparse Signals ik

It support were known a priori, for M>K, the system is in fact
overdetermined, and can be solved exactly in the noiseless

setting!
I : I X I

y = Fx = Fgxg

Big “if” however...need to design F such that jointly
* Support can be detected.
* On-support coefticients can be estimated.



Designing Sampling

Pertfect Sampling (M=N)
F=[f.f,. ..ty =1

Each row of F Is a different measurement of x. Here, a Dirac
delta at each dimension of X.

fj = dlj — 1l



Designing Sampling

Undersampling (M<N)

H H
H ||
. no impact
Yj = <fj7 X) _ « [l on observations
V j e, M] | ||
H ||

Since some entries of x do not influence measurements, no way
to recover them.
* Their information is lost in the projection.



Designing Sampling

Undersampling (M<N)

f; # 0lj — 1]
L NN
-
y;’ ]:€<£J ;\Z> m - | T X All sampled
- O |

If we choose a wider filter for f, like a Gaussian or Step function,
we ensure all samples contribute to measurements.



Designing Sampling

Related to Anti-Aliasing:
Ex. Downsampling image...



Designing Sampling

Related to Anti-Aliasing:
Ex. Downsampling image...
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Designing Sampling

However, for sparse X, “localized” filters can miss sparse elements




Designing Sampling

)

However, for sparse X, “localized” filters can miss sparse elements

* Redundancy in measurement from correlation



Designing Sampling

Undersampling (M<N): Accounting for sparsity
De-localized (global) filters

H HEEEEEEEEEEN |
H HEEEEEEEEEEN
vi=(Ex) o EEEN
v jenn B HEEEEEEEEEEN
H HEEEEEEEEEEN
....... L =
Want:

* Every observation to be informative
* Every observation to tell us something different
* A construction that helps us find the support



2005: Explosion of Compressed Sensing
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Compressed Sensing Theory

Tool: Restricted [sometry

[Candés & Tao, 2005] A matrix F' satisfies the restricted isometry property
(RIP) of order K if there exists some small, bounded constant dx such that

(1= dr)lIxll3 < [[Fx|3 < (1+dx)]1x]]3
holds for all K-sparse x,

x € {x:||x|l[o < K}.

Essentially:

*

f F obeys RIP-K, then it is approximately orthonormal for all

K-sparse vectors.
f F obeys RIP-2K, then it approximate preserves distance

relationships of K-sparse vectors.




Compressed Sensing Theory

An Aside for Lp Norms

Supposing some vector x of dimensionality N, we define the £, norm as,

N 1
Y
], 2 (zm\p) |
1=1

Hence,

o ||xX|l2=+/a?+a%+ - +2%
o |[x[|1 = |z1]+ |@2| + -+ [2N]

e ||x||g = Count(x; # 0;Vi € [1, N]) (semi-norm)

® || X]|oo = INAX;c[1,N] ‘xz‘




ASIDE: Lp Norms
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Compressed Sensing Theory

Result: Existence of Unigue Solution

[Candeés & Tao, 2005| Suppose F' satisfies the RIP for o < 1 for some
K > 1. For some support set T" with |T| < K, let

A
Y — F TC
for some arbitrary |T'| dimensional vector c.

e The set T" and the coefficients (c;) e+ can be reconstructed uniquely from
knowledge of y and F'.

Essentially:

* |If we have a RIP-2K satisfying F, the sparsest solution in the
feasible set is the true one.

* Only implies existence, search algorithm over T is NP-Hard.



Compressed Sensing Theory

Result: Efficient Algorithm EXists

[Candés & Tao, 2005] Suppose F' satisfies the stronger RIP,

1

O + 0o + 03 < 1’

and c is a real vector with support T obeying |T'| < K. Let y = F'c. Then, c is
the unique minimizer of

m(}n |d||y s.t. Fd=Yy.

Essentially:
* Given a stricter RIP-3K on F, the true solution is unigue and
can be found efficient via a convex optimization!




Compressed Sensing Theory

Result: Ef A

[Candes & F

and c i1s a re ' . Then, c is

the unique 1
X + S

Essentiall
* Given a Nigque and
can be f



Compressed Sensing Theory

Result: Efficient Algorithm EXists

[Candes & Tao, 2005] Suppose F' satisfies the stronger RIP,

1

O + 0o + 03 < 7

and c is a real vector with support T obeying |T| < K. Let y = Fc. Then, c is
the unique minimizer of

m(}n |d||; s.t. Fd=Yy.

Essentially:
* Given a stricter RIP-3K on F, the true solution is unigue and
can be found efficient via a convex optimization.

However, RIP verification of a matrix is NP-Hard, so deterministic design is

intractable!



Compressed Sensing Theory

Result: Approximately Sparse Signals

[Candés, Romberg, & Tao, 2006] If F' obeys a RIP for o < v/2 — 1, then
the ¢1 recovered solution

x* =argmin |la||y st. Fa=y
a

has an error bounded by,
%" —x|[2 < |[x —xx]l1,

where xj 1s equal to the true solution x for the K largest components and 0
everywhere else.

Effectively: \We can recover compressible signals (ones with
power-law decay) up to their nearest K-sparse approximation.



Compressed Sensing Theory

Result: Aprravimatahs Qansrea Qimnala

Expoentially Decaying Signal
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Compressed Sensing Theory Pl

Final Piece of the Puzzle: Randomness

[Candeés & Tao, 2005] Assume M < N and let F' be an M x N matrix whose

1

entries are i.i.d. Gaussian with zero mean and variance 7:. Then, unique /4

recoverability holds with overwhelming probability for sufficiently small ratio
K/N.




Compressed Sensing Theory

Final Piece of the Puzzle: Randomness

[Candeés & Wakin, 2008] If F' is constructed by
e Randomly sampling columns as unit vectors from R,
e Randomly sampling i.i.d. entries from N(0, 55 ),

e Randomly sampling from and some orthonormal basis and normalizing,

. o« __L . .
e Randomly sampling i.i.d. £ T Bernoulli entries,

then unique ¢; recoverability holds for K-sparse x for the nearly-optimal

bound v
M>C- K1 — .
()




Compressed Sensing Theory

Final Piece of the Puzzle: Randomness

[Candeés & Wakin, 2008] If F' is constructed by
e Randomly sampling columns as unit vectors from R,

e Randomly sampling i.i.d. entries from N'(0, =7 ),

e Randomly sampling from and some orthonormal basis and normalizing,

e Randomly sampling 1.i.d. :\/LM Bernoulli entries,

then unique ¢; recoverability holds for K-sparse x for the nearly-optimal

bound v
M>C- K1 — .
()

Vital for practical implementation of CS for real sensing problems.



CS: Restricted Isometry

Monte Carlo: Set N=2048 and test stability of K-sparse
subsets of projection matrix. (Here, 20 realizations.)

103 " T T ]
—o—p = 0.10| 1
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Compressed Sensing Theory

Result: Sparse Bases & Mutual Incoherence

Assume that a signal x has a sparse representation basis, ¥, such that
x =014
where 6 is K-sparse. One may then write the measurements as
y = F'x = A0,
where A = FU~! and solve

¢* = argmin |[v||1 st. Av =y,

x* = Yo




ASIDE: Sparse Bases in 2D

l. Discrete 2D Fourier Basis

100 150 200 250 300
MSE = 4.69e-03




ASIDE: Sparse Bases in 2D

Il. 2D Discrete Cosine Transform

50 100 150 200 250 300
MSE = 4.32e-03




0 = Ux
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Compressed Sensing Theory

Result: Sparse Bases & Mutual Incoherence

[Donoho, Elad, & Temlyakov, 2006], [Candées & Romberg, 2007] Given
two orthobases of RY, F' and U, the mutual coherence between the orthobases
is defined to be

p(F, W) = max [(Fy, ;)]

t,J

where F; and W, refer to the columns of the matrices F' and W, respectively.
e Subsequently, u(F, V) € [1,@}

e Maximal incoherence at u(F,¥) = 1, e.g. time (spike) and frequency
(Fourier) bases.

Effectively: A measure of the similarity between two domains.



Compressed Sensing Theory

Result: Sparse Bases & Mutual Incoherence

[Candés & Romberg, 2007]| Given random sampling matrix F' and that the
representation 6 of x in the basis ¥ is K-sparse, if

M>C-p*(F,¥) K -logN,
then the £; recovered solution is exact with overwhelming probability:.

e Desire maximally incoherent pairs (F, V)

[Candes & Wakin, 2008] Random matrices are largely incoherent with any
fixed basis W. For random orthobasis F',

w(F, W) =+/2log N w.h.p.




Compressed Sensing: Two Parts

. Random Sampling

|
— X

|

|

y = FXx

Il. Sparse Reconstruction

X =argmin |la|]|1 s.t. y= Fa
a




—

Perspective: Universal Encoder | aillk

\ Raw (Massive) Data  pr;/ 0 1264s5, ..

Encoder
(Compression & Quantization)

High-Res Senors Heavy & Slow

g -
Decoder

(Reconstruction/Decompression)

Light & Fast
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Perspective: Universal Encoder | dilik

JPEG/J2K, H.264/5, ...

Encoder
(Compression & Quantization)

99% of bits

Why did we need so many bits in the first place?
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Perspective: Universal Encoder |dlik

Light & Fast
(Instantaneous?)

Low-Res (single?) Sensor

(potentially)
Heavy & SlOW (Reconstruction/Decompression)
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Perspective: Universal Encoder | dilik

Light & Fast
(Instantaneous?)

(potentially) Decoder
Heavy & SlOW (Reconstruction/Decompression)
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Perspective: Universal Encoder | dilik

Signal Model

| > Decoder 4 |
(Reconstruction/Decompression) E

Priors: For fixed M, the information we can bring to the table
about X a priori, controls the degree to which we can recover
the signal.
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Perspective: Universal Encoder | dilik

Beliefs About

Signal Model

L

Decoder
(Reconstruction/Decompression)

Priors: For fixed M, the information we can bring to the table
about X a priori, controls the degree to which we can recover
the signal.



Reconstruction

. Basis Pusuit

argmin ||x||; st Fx=Yy

Linear Program: Can be solved efficiently using any number
of methods, including,

* Interior-point methods (e.g. path-following primal-dual)

» Simplex methods

Implementations: See the original L1-Magic Toolbox,
http://users.ece.gatech.edu/justin/lImagic/



http://users.ece.gatech.edu/justin/l1magic/

Reconstruction

Il. Basis Pursuit Denoising (BPDN), Lasso

argmin ||y — Fx||5 s.t. ||x|i <K

argmin ||x||1 st ||y — Fx||3 <e
X

argmin [y — Fx|[3 + Allx]]s

Realistic: Accounts for noisy measurements.
Second Order Cone Program: Solvable via log-barrier.
Lasso: Solvable via any number of methods,(Least Angle

Regression, Gauss-Siedel, Shooting, Block Coordinate, Active Sez‘...),
but also Iterative Soft Thresholding (see: TwIST, FISTA, NESTA)



Reconstruction

lll. Relaxed LO

argmin ||y — Fx||5 s.t. ||x|lo <K
X

Why return to non-convex? Requires greedy techniques...
» Easy-to-iImplement solvers
- Relaxed RIP requirements, potentially lower
requirements on M
» Generally computationally/memory efficient
» Robust to inconsistencies/pathologies of F

Solvable via: Orthogonal Matching Pursuit (OMP),

Stagewise OMP, Compressed Sampling MP,
lterative Hard Thresholding.



Reconstruction

IV. Probabilistic

P(x|F,y) o Py(x)P(y|F,x)

arg maxy P(x|F,y)

arg maXy /dx x - P(x|F,y)

Powerful Analytics: Can use all the tools of statistical

mechanics to study Cs.
Powerful Performance: Bayes-optimal recovery thresholds,
but conditions are brittle.

Solve via: relaxed-Belief Propagation, Approximate Message Passing,
Expectation Propagation.



Magnetic Resonance Imaging (MRI)
and J. M. Pauly, “Sparse MRI: The

Application of Compressed Sensing for Rapid MR Imaging,” Magnetic
no. 6, 2007.

M. Lustig, D. Donoho,

Resonance in Medicine,

vol. 58,

SHIELD

COMPUTER

=

Figures from paper.



Sampling Design Examples

Magnetic Resonance Imaging (MRI)
M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The
Application of Compressed Sensing for Rapid MR Imaging,” Magnetic

Resonance 1n Medicine, vol. 58, no. 6, 2007.

v

density ariable density_

low-resqlution rana‘(;lrﬁudrl{cllersampling random undersampling
RampaTY zero-fill CS zero-fill w/dc CS

x20

incoherent artifacts

x12

x8

sparse transform partial k-space

FIG. 1. lllustration of the domains and operators used in the paper
as well as the requirements of CS: sparsity in the transform domain,
incoherence of the undersampling artifacts, and the need for non-
linear reconstruction that enforces sparsity. [Color figure can be
viewed in the online issue, which is available at www.interscience.

wiley.com.]
— —

— Figures from paper.

FIG. 6. Simulation: Reconstruction artifacts as a function of acceleration. The LR reconstructions exhibit diffused boundaries and loss of
small features. The ZF-w/dc reconstructions exhibit an significant increase of apparent noise due to incoherent aliasing, the apparent noise
appears more “white” with variable density sampling. The CS reconstructions exhibit perfect reconstruction at 8- and 12-fold (only var. dens.)
accelerations. With increased acceleration there is loss of low-contrast features and not the usual loss of resolution. The reconstructions from
variable density random undersampling significantly outperforms the reconstructions from uniform density random undersampling. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

—



Single Pixel Camera
M. Duarte et al, “Single-Pixel Imaging via Compressive Sampling,”

Signal Processing Magazine, vol. 25, no. 2, 2008.

Mirror -10 deg

DMD+ALP Board

(a) Landing Tip Substrate (b)

Fig. 6. (a) Schematic of two mirrors from a Texas Instruments digital micromirror device (DMD). (b)
A portion of an actual DMD array with an ant leg for scale. (Image provided by DLP Products, Texas

Instruments.)
————— . - e
\"
Photodiode circult
' A-~=~lview of the single-pixel compressive sampling (CS) camera in the lab [5].
g
(@ (b)

Fig. 2.  Single-pixel photo album. (a) 256 x 256 conventional image of a black-and-white R. (b) Single-
pixel camera reconstructed image from M = 1300 random measurements (50 x sub-Nyquist). (c) 256 x 256
pixel color reconstruction of a printout of the Mandrill test image imaged in a low-light setting using a single

photomultiplier tube sensor, RGB color filters, and M = 6500 random measurements. F / g u /’ e S f/’ O m p a p e /’

N — —




Sampling Design Examples

. . . .
Structured lllumination and Fluorescence Microscopy

V. Studer et al, “Compressive Fluorescence Microscopy for
Biological and Hyperspectral Imaging,” PNAS, vol. 109, no. 26,

2012. |
A 0| faser
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objective
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Fig. 2. Top left to bottom right: camera snapshot and reconstructed 256-by-256 bead images for values of the undersampling ratio equal to 8, 16, 32, 64, and
128. (A) Plot of the PSNR (see text) for a nominal illumination level (blue curve) and for the same level reduced by a factor 10 (red curve) and a factor of 100
. (green curve) (simulated data). The solid lines correspond to the PSNR in raster scan for the same surfacic illumination. (B) Same as (A) for the experimental data.
Pattern number (1 to 65536) 4 — —

L B B

Fig. 1. (A) Experimental setup. The dotted and plain segments correspond to
planes respectively conjugated to the pupil and sample planes. (B) Slice of lily
anther (endogenous fluorescence with epifluorescence microscopy image re-
corded on a CCD camera). (C) Projection of a Hadamard pattern on a uniform
fluorescent sample. (D) Projection of the same Hadamard pattern on the bio-
logical sample. (E) Fluorescence intensity during an acquisition sequence.

—— —



Random Lens Imager
R. Fergus, A. Torralba, and W. T. Freeman, “Random Lens Imaging,”

Tech. Report, MIT, no. MIT-CSAIL-2006-058, September, 2006.

Opaque element to shield

conventional lens _ P STHEIRE
sensor from direct illumination

Random mirror
elements

«—Sensor
Front plate causes total

internal reflection of reflected rays

Opaque covering

prohibits direct
exposure of
photosensors.
Sensor array
(does not need G " Randomly

to be in a square oriented

"fa—'- Ay =Y AV 1
array in order to /77 ZIRUN AV refractive
Soonsist s elements.
square image). (c)

Figure 2: Candidate physical designs. (a) Conventional lens. (b) Random lens using reflective

elements, (c) Random lens using refractive elements.

—

Figures from paper.



Random Lens Imager
R. Fergus, A. Torralba, and W. T. Freeman, “Random Lens Imaging,”
Tech. Report, MIT, no. MIT-CSAIL-2006-058, September, 2006.

® b) ©) )

Figure 3: (a) Consider these 3 Lambertian objects in our 2-d world. (b) The resulting lightfield, or
intensity of each ray (a,b). Under most conditions, the lightfield exhibits extraordinary structure and
redundancy. (c¢) Conventional lens, focussed at A, integrates at each sensor position along vertical
slices of this lightfield, like the 3 integral lines shown in red. (d) A random lens sensor element
integrates over a pseudo-random set of lightfield points.

S — e

Figures from paper.



Random Lens Imager
R. Fergus, A. Torralba, and W. T. Freeman, “Random Lens Imaging,”
Tech. Report, MIT, no. MIT-CSAIL-2006-058, September, 2006.

L dllﬂll

Calibrate

Recovery

Figure 5: A closeup of the random reflective surface and camera setup used in our experiments. The
schematic diagram on the right shows the light path to the sensor.

Input Random lens output Input Random lens output

Figure 6: Examples of pictures taken with our random lens camera. Each pair shows an image
projected on the wall, and the output of the camera.

Figures from paper.
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Multiply Scattering Media
A. Liutkus et al, “Imaging with Nature: Compressive

Imaging Using a Multiply Scattering Medium,” Scientific

Reports 4, 2014.

laser

Spatial Light Modulator

(for calibration and display)

phase coding

iL

sparse object

multiply scattering
material (calibrated)

S

imaging device

reconstructed g
object I I
transmission matrix

reconstruction

/

(i

speckle pattern

M sensors

(iii)

Figure 2 | Experimental setup for compressive imaging using multiply scattering medium. Within the imaging device, waves coming from the object (i)
go through a scattering material (ii) that efficiently multiplexes the information to all M sensors (iii). Provided the transmission matrix of the material has
been estimated beforehand, reconstruction can be performed using only a limited number of sensors, potentially much lower than without the
scattering material. In our optical scenario, the light coming from the object is displayed using a spatial light modulator.

—

Figures from paper.



Sampling Design Examples

Multiply Scattering Media
A. Liutkus et al, “Imaging with Nature: Compressive

Imaging Using a Multiply Scattering Medium,” Scientific
Reports 4, 2014.

probability of success for CS recovery (MMV with 3 observations)
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Figure 3 | Experimentally measured Transmission Matrix (TM). (a) TM for a multiply scattering material as obtained in our experimental study. (b)
Coherence of sensing matrices as a function of their number M of rows, for both a randomly generated Gaussian i.i.d. matrix, and an actual experimental
TM. Coherence gives the maximal colinearity between the columns of a matrix. The lower, the better is the matrix for CS.
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Coded Aperture Snapshot Spectral Imaging (CASSI)

A. Wagadarikar et al, “Single Disperser Design for Coded Aperture
Snapshot Spectral Imaging,” Applied Optics, vol 47, no. 10, 2008.
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optics Fig. 2. (Color online) Experimental prototype of the SD CASSI.
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Fig. 1. Schematic of a SD CASSI. The imaging optics image the
scene onto the coded aperture. The relay optics relay the image

from the plane of the coded aperture to the detector through the 4
dispersive element. F/gures frOm pap er
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Coded Aperture Snapshot Spectral Imaging (CASSI)
A. Wagadarikar et al, “Single Disperser Design for Coded Aperture
Snapshot Spectral Imaging,” Applied Optics, vol 47, no. 10, 2008.

Fig. 4. (Color online) Scene consisting of a Ping-Ponj
nated by a 543 nm green laser and a white light sourt
a 560 nm narrowband filter (left), and a red Ping-Pc¢
minated by a white light source (right).
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Color online) Aperture code pattern used by the recon-
algorithm to generate an estimate of the data cube.
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Fig. 5. (Color online) Detector measurement of the scene consist-

ing of the two Ping-Pong balls. Given the low linear dispersion of
the prism, there is spatiospectral overlap of the aperture code-
modulated images of each ball.
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Figures from paper.



Sampling Design Examples

Coded Aperture Snapshot Spectral Imaging (CASSI)

A. Wagadarikar et al, “Single Disperser Design for Coded Aperture
Snapshot Spectral Imaging,” Applied Optics, vol 47, no. 10, 2008.
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Fig. 6. (Color online) Spatial content of the scene in each of 28 spectral channels between 540 and 640 nm. The green ball can be seen
in channels 3, 4, 5, 6, 7, and 8; the red ball can be seen in channels 23, 24, and 25.
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Can CS Apply to My Problem? jilik

l. Think About Sampling

e Can your sampling be re-designed to take advantage
of randomness in the sampling procedure?

Do you have a manner of efticiently imposing random
projections in analog?

 Does this new procedure require sequential
measurements? |s your signal time-varying?

* Does knowledge of F require careful calibration”
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Can CS Apply to My Problem? jilik

Il. Think About Reconstruction

® [s your signhal sparse in the ambient domain?

e [f not, does there exist a sparse basis for which it is”
e [f not, do you have enough data to infer one?
(Dictionary Learning)

® |s the support of your signal correlated?
- E.g. wavelet-trees, etc.

e \What reconstruction methods are best suited for your
signal dimensionality?
- [rade-off in accuracy and efficiency...
e [s your noise Gaussian? If not, does a reconstruction
method exist for your noise model?
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Questions?

Merci!




