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Introduction to 
Compressed Sensing



Warm-Up: 12 Balls

Problem: 12 Balls, 11 of which are of equal weight.   
   One outlier is either heavier or lighter.

Given a balance, what is the least number of 
weighings (tests) to identify the outlier 

& know if it is heavier or lighter?



Group-Testing
Context:  U.S.A. is drafting soldiers for WW2, but wants to  

  weed out syphilitic recruits. 
Problem: Blood tests are expensive, and individual testing 

  is too cost prohibitive.

Wasserman Test

How can one effectively carry out mass-screening?



Group-Testing
[Dorfman, 1943] Test for a positive result in a mixed-sample  

              (pooling) and re-test positive pools.
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Adaptive v. Non-adaptive

Efficiency: Adaptive testing will always be at least or more efficient 
(in number of tests) than non-adaptive testing: makes use of 
intermediate information.

Practicality: What if the “soldier” moves around on assignments? 
What if our test destroys the sample? 

• Often one cannot take advantage of re-testing.

Non-Adaptive Testing: Requires a priori pooling design to make 
the most efficient test schedule that allows accurate inference of 
faults without re-testing.



Linear Observation

y = Fx

Assuming that we can model our sampling procedure as 
linear, in noiseless setting we have,

Problem: Knowing samples and the sampling design, can 
we know the signal? 

Linear Algebra: Only if the system F is invertible (square) 
Nyquist: Only if sampled at rate twice the bandwith of x.

observed 
samples

testing/sampling 
design

unknown 
signal/response



Linear Algebra

= ⇥

[Nyquist & LA] For accurate reconstruction of N coefficients, 
one requires as many samples, M, as coefficients.

y = Fx



Linear Algebra

= ⇥

Undersampling: Our goal is to reduce measurements (M<N). 
Removing measurements from y, F, makes solving for  
x impossible, in general.

An entire space of possible solutions:
y = F (x+ s 2 Null(F ))

y = Fx
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Linear Algebra

Prior Knowledge: We can’t get something for free, but we by 
imposing what knowledge we have a prior. 

E.g. Shrinkage… ||x||2  ✏
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Undersampling of Sparse Signals

= ⇥

Prior Knowledge: A more interesting/useful case, what about 
a sparse prior?

y = Fx

K-Sparse: Signal x has K non-zero elements. 
ρ-Dense: Coefficients of x are non-zero with probability ρ. 
Support: Location of non-zero elements.



ASIDE: Sparsity & Information
In (very) General: If a signal is interesting or informative, it 
probably admits a parsimonious (simple) description. 

• Has some identifiable pattern (ordered). 
• Is distinguishable from noise (order => not max ent). 



If support were known a priori, for M>K, the system is in fact 
overdetermined, and can be solved exactly in the noiseless 
setting!

= ⇥

y = Fx = FSxS

Undersampling of Sparse Signals



= ⇥

If support were known a priori, for M>K, the system is in fact 
overdetermined, and can be solved exactly in the noiseless 
setting!

y = Fx = FSxS

Big “if” however…need to design F such that jointly 
* Support can be detected. 
* On-support coefficients can be estimated.

Undersampling of Sparse Signals



Designing Sampling
Perfect Sampling (M=N)

= ⇥yj = hfj ,xi
8 j 2 [1,M ]

F = [f1, f2, . . . , fM ]T = I

Each row of F is a different measurement of x. Here, a Dirac 
delta at each dimension of x. 

fj = �[j � i]



Designing Sampling
Undersampling (M<N)
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= ⇥yj = hfj ,xi
8 j 2 [1,M ]

Since some entries of x do not influence measurements, no way 
to recover them. 

* Their information is lost in the projection.

no impact 
on observations

fj = �[j � i]



Designing Sampling
Undersampling (M<N)

= ⇥yj = hfj ,xi
8 j 2 [1,M ]

If we choose a wider filter for f, like a Gaussian or Step function, 
we ensure all samples contribute to measurements.

All sampled

fj 6= �[j � i]



Designing Sampling
Related to Anti-Aliasing: 
Ex. Downsampling image…

fj = �[j � i]

fj = Gauss�[j]
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Designing Sampling
Undersampling (M<N): Accounting for sparsity

= ⇥yj = hfj ,xi
8 j 2 [1,M ]

However, for sparse x, “localized” filters can miss sparse elements



Designing Sampling
Undersampling (M<N): Accounting for sparsity

However, for sparse x, “localized” filters can miss sparse elements 
* Redundancy in measurement from correlation

= ⇥yj = hfj ,xi
8 j 2 [1,M ]

x

fj fj+1 fj+2 · · ·



Designing Sampling
Undersampling (M<N): Accounting for sparsity 

                                 De-localized (global) filters

= ⇥yj = hfj ,xi
8 j 2 [1,M ]

Want:
* Every observation to be informative 
* Every observation to tell us something different 
* A construction that helps us find the support



2005: Explosion of Compressed Sensing

E. Candès J. Romberg T. Tao D. DonohoJ. Tanner

…and many, many more in subsequent years.

Core contributors…



Compressed Sensing Theory

Essentially:  
* If F obeys RIP-K, then it is approximately orthonormal for all 

K-sparse vectors. 
* If F obeys RIP-2K, then it approximate preserves distance 

relationships of K-sparse vectors.

Tool: Restricted Isometry

[Candès & Tao, 2005] A matrix F satisfies the restricted isometry property

(RIP) of order K if there exists some small, bounded constant �K such that

(1� �K)||x||22  ||Fx||22  (1 + �K)||x||22

holds for all K-sparse x,

x 2 {x : ||x||0  K} .



Compressed Sensing Theory
An Aside for Lp Norms

Supposing some vector x of dimensionality N , we define the `p norm as,

||x||p ,
 

NX

i=1

|xi|p
! 1

p

.

Hence,

• ||x||2 =
p

x

2
1 + x

2
2 + · · ·+ x

2
N

• ||x||1 = |x1|+ |x2|+ · · ·+ |xN |

• ||x||0 = Count(xi 6= 0; 8i 2 [1, N ]) (semi-norm)

• ||x||1 = maxi2[1,N ] |xi|



ASIDE: Lp Norms

To `1

To `0



Compressed Sensing Theory

Essentially:  
* If we have a RIP-2K satisfying F, the sparsest solution in the 

feasible set is the true one. 
* Only implies existence, search algorithm over T is NP-Hard.

Result: Existence of Unique Solution

[Candès & Tao, 2005] Suppose F satisfies the RIP for �2K < 1 for some

K � 1. For some support set T with |T |  K, let

y , FT c

for some arbitrary |T | dimensional vector c.

• The set T and the coe�cients (cj)j2t can be reconstructed uniquely from

knowledge of y and F .



Compressed Sensing Theory

Essentially:  
* Given a stricter RIP-3K on F, the true solution is unique and 

can be found efficient via a convex optimization!

Result: Efficient Algorithm Exists

[Candès & Tao, 2005] Suppose F satisfies the stronger RIP,

�K + �2K + �3K <
1

4

,

and c is a real vector with support T obeying |T |  K. Let y = Fc. Then, c is

the unique minimizer of

min

d
||d||1 s.t. Fd = y.
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* Given a stricter RIP-3K on F, the true solution is unique and 

can be found efficient via a convex optimization.

Result: Efficient Algorithm Exists

[Candès & Tao, 2005] Suppose F satisfies the stronger RIP,

�K + �2K + �3K <
1

4

,

and c is a real vector with support T obeying |T |  K. Let y = Fc. Then, c is

the unique minimizer of

min

d
||d||1 s.t. Fd = y.

F
x

y

x+ s



Compressed Sensing Theory

Essentially:  
* Given a stricter RIP-3K on F, the true solution is unique and 

can be found efficient via a convex optimization.

Result: Efficient Algorithm Exists

[Candès & Tao, 2005] Suppose F satisfies the stronger RIP,

�K + �2K + �3K <
1

4

,

and c is a real vector with support T obeying |T |  K. Let y = Fc. Then, c is

the unique minimizer of

min

d
||d||1 s.t. Fd = y.

However, RIP verification of a matrix is NP-Hard, so deterministic design is 
intractable!



Compressed Sensing Theory
Result: Approximately Sparse Signals

[Candès, Romberg, & Tao, 2006] If F obeys a RIP for �2K <
p
2� 1, then

the `1 recovered solution

x

⇤
= argmin

a
||a||1 s.t. Fa = y

has an error bounded by,

||x⇤ � x||2  ||x� xK ||1,

where xK is equal to the true solution x for the K largest components and 0

everywhere else.

Effectively: We can recover compressible signals (ones with 
power-law decay) up to their nearest K-sparse approximation.



Effectively: We can recover compressible signals (ones with 
power-law decay) up to their nearest K-sparse approximation.

Compressed Sensing Theory
Result: Approximately Sparse Signals

[Candès, Romberg, & Tao, 2006] If F obeys a RIP for �2K <
p
2� 1, then

the `1 recovered solution

x

⇤
= argmin

a
||a||1 s.t. Fa = y

has an error bounded by,

||x⇤ � x||2  ||x� xK ||1,

where xK is equal to the true solution x for the K largest components and 0

everywhere else.

energy distributed 
towards few 
coefficients



Compressed Sensing Theory
Final Piece of the Puzzle: Randomness

[Candès & Tao, 2005] Assume M  N and let F be an M ⇥N matrix whose

entries are i.i.d. Gaussian with zero mean and variance

1
M . Then, unique `1

recoverability holds with overwhelming probability for su�ciently small ratio

K/N .



Compressed Sensing Theory
Final Piece of the Puzzle: Randomness

[Candès & Wakin, 2008] If F is constructed by

• Randomly sampling columns as unit vectors from RM
,

• Randomly sampling i.i.d. entries from N (0, 1
M ),

• Randomly sampling from and some orthonormal basis and normalizing,

• Randomly sampling i.i.d. ± 1p
M

Bernoulli entries,

then unique `1 recoverability holds for K-sparse x for the nearly-optimal

bound

M � C ·K log

✓
N

K

◆
.



Compressed Sensing Theory
Final Piece of the Puzzle: Randomness

[Candès & Wakin, 2008] If F is constructed by

• Randomly sampling columns as unit vectors from RM
,

• Randomly sampling i.i.d. entries from N (0, 1
M ),

• Randomly sampling from and some orthonormal basis and normalizing,

• Randomly sampling i.i.d. ± 1p
M

Bernoulli entries,

then unique `1 recoverability holds for K-sparse x for the nearly-optimal

bound

M � C ·K log

✓
N

K

◆
.

Vital for practical implementation of CS for real sensing problems.



CS: Restricted Isometry

Monte Carlo: Set N=2048 and test stability of K-sparse 
subsets of projection matrix. (Here, 20 realizations.)



Compressed Sensing Theory
Result: Sparse Bases & Mutual Incoherence

Assume that a signal x has a sparse representation basis,  , such that

x =  �1✓

where ✓ is K-sparse. One may then write the measurements as

y = Fx = A✓,

where A = F �1, and solve

✓⇤ = argmin
⌫

||⌫||1 s.t. A⌫ = y,

x

⇤ =  ✓⇤



ASIDE: Sparse Bases in 2D

I. Discrete 2D Fourier Basis



II. 2D Discrete Cosine Transform

ASIDE: Sparse Bases in 2D



III. 2D Haar Wavelets

ASIDE: Sparse Bases in 2D



Compressed Sensing Theory
Result: Sparse Bases & Mutual Incoherence

Effectively: A measure of the similarity between two domains.

[Donoho, Elad, & Temlyakov, 2006], [Candès & Romberg, 2007] Given

two orthobases of RN
, F and  , the mutual coherence between the orthobases

is defined to be

µ(F, ) , max

i,j
|hFj , ii|,

where Fj and  i refer to the columns of the matrices F and  , respectively.

• Subsequently, µ(F, ) 2
h
1,
p
N
i

• Maximal incoherence at µ(F, ) = 1, e.g. time (spike) and frequency

(Fourier) bases.



Compressed Sensing Theory
Result: Sparse Bases & Mutual Incoherence

[Candès & Romberg, 2007] Given random sampling matrix F and that the

representation ✓ of x in the basis  is K-sparse, if

M � C · µ2
(F, ) ·K · logN,

then the `1 recovered solution is exact with overwhelming probability.

• Desire maximally incoherent pairs (F, )

[Candès & Wakin, 2008] Random matrices are largely incoherent with any

fixed basis  . For random orthobasis F ,

µ(F, ) =
p

2 logN w.h.p.



Compressed Sensing: Two Parts

= ⇥

y = Fx

b
x = argmin

a
||a||1 s.t. y = Fa

I. Random Sampling

II. Sparse Reconstruction



Perspective: Universal Encoder

Decoder
(Reconstruction/Decompression)

JPEG/J2K, H.264/5, …

Heavy & Slow

Light & Fast 

Encoder
(Compression & Quantization)

Raw (Massive) Data

High-Res Senors



JPEG/J2K, H.264/5, …

Encoder
(Compression & Quantization)

Raw (Massive) Data

99% of bits1% of bits

Why did we need so many bits in the first place?

Perspective: Universal Encoder



Decoder
(Reconstruction/Decompression)

Low-Res (single?) Sensor

Light & Fast 
(Instantaneous?)

(potentially) 
Heavy & Slow

Perspective: Universal Encoder



Decoder
(Reconstruction/Decompression)

Low-Res (single?) Sensor

Light & Fast 
(Instantaneous?)

(potentially) 
Heavy & Slow

Every Bit is Sacred!

Every Bit is Meaningful!

Perspective: Universal Encoder



CS Samples

Decoder
(Reconstruction/Decompression)

Beliefs About 

Signal Model

Priors: For fixed M, the information we can bring to the table 
about x a priori, controls the degree to which we can recover 
the signal.

Perspective: Universal Encoder

 



CS Samples

Decoder
(Reconstruction/Decompression)

Beliefs About 

Signal Model

Priors: For fixed M, the information we can bring to the table 
about x a priori, controls the degree to which we can recover 
the signal.

Perspective: Universal Encoder

 



Reconstruction

argmin
x

||x||1 s.t. Fx = y

I. Basis Pusuit

Linear Program: Can be solved efficiently using any number 
of methods, including, 

• Interior-point methods (e.g. path-following primal-dual) 
• Simplex methods 

Implementations: See the original L1-Magic Toolbox, 
http://users.ece.gatech.edu/justin/l1magic/

http://users.ece.gatech.edu/justin/l1magic/


Reconstruction

argmin
x

||y � Fx||22 s.t. ||x||1  K

argmin
x

||x||1 s.t. ||y � Fx||22  ✏

argmin
x

||y � Fx||22 + �||x||1

II. Basis Pursuit Denoising (BPDN), Lasso

Realistic: Accounts for noisy measurements.

Second Order Cone Program: Solvable via log-barrier. 

Lasso: Solvable via any number of methods,(Least Angle 
Regression, Gauss-Siedel, Shooting, Block Coordinate, Active Set…), 
but also Iterative Soft Thresholding (see: TwIST, FISTA, NESTA)



Reconstruction

argmin
x

||y � Fx||22 s.t. ||x||0  K

III. Relaxed L0

Why return to non-convex? Requires greedy techniques… 
• Easy-to-implement solvers 
• Relaxed RIP requirements, potentially lower 
requirements on M 

• Generally computationally/memory efficient 
• Robust to inconsistencies/pathologies of F 

Solvable via: Orthogonal Matching Pursuit (OMP),  
           Stagewise OMP, Compressed Sampling MP,  
           Iterative Hard Thresholding.



Reconstruction

IV. Probabilistic

Powerful Analytics: Can use all the tools of statistical 
mechanics to study CS. 
Powerful Performance: Bayes-optimal recovery thresholds, 
but conditions are brittle. 
Solve via: relaxed-Belief Propagation, Approximate Message Passing, 

        Expectation Propagation.

P (x|F,y) / P0(x)P (y|F,x)

argmax

x

P (x|F,y)

argmax

x

Z
dx x · P (x|F,y)



Sampling Design Examples
Magnetic Resonance Imaging (MRI)
M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The 
Application of Compressed Sensing for Rapid MR Imaging,” Magnetic 
Resonance in Medicine, vol. 58, no. 6, 2007.

Figures from paper.



Sampling Design Examples
Magnetic Resonance Imaging (MRI)
M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The 
Application of Compressed Sensing for Rapid MR Imaging,” Magnetic 
Resonance in Medicine, vol. 58, no. 6, 2007.

Figures from paper.



Sampling Design Examples
Single Pixel Camera
M. Duarte et al, “Single-Pixel Imaging via Compressive Sampling,” 
Signal Processing Magazine, vol. 25, no. 2, 2008.

Figures from paper.



Sampling Design Examples
Structured Illumination and Fluorescence Microscopy
V. Studer et al, “Compressive Fluorescence Microscopy for 
Biological and Hyperspectral Imaging,” PNAS, vol. 109, no. 26, 
2012. 



Sampling Design Examples
Random Lens Imager
R. Fergus, A. Torralba, and W. T. Freeman, “Random Lens Imaging,” 
Tech. Report, MIT, no. MIT-CSAIL-2006-058, September, 2006.

Figures from paper.
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Sampling Design Examples
Random Lens Imager
R. Fergus, A. Torralba, and W. T. Freeman, “Random Lens Imaging,” 
Tech. Report, MIT, no. MIT-CSAIL-2006-058, September, 2006.

Figures from paper.

1. Calibrate
2. Recovery



Sampling Design Examples
Multiply Scattering Media
A. Liutkus et al, “Imaging with Nature: Compressive 
Imaging Using a Multiply Scattering Medium,” Scientific 
Reports 4, 2014.

Figures from paper.
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Multiply Scattering Media
A. Liutkus et al, “Imaging with Nature: Compressive 
Imaging Using a Multiply Scattering Medium,” Scientific 
Reports 4, 2014.

Figures from paper.



Sampling Design Examples
Coded Aperture Snapshot Spectral Imaging (CASSI)
A. Wagadarikar et al, “Single Disperser Design for Coded Aperture 
Snapshot Spectral Imaging,” Applied Optics, vol 47, no. 10, 2008.

Figures from paper.



Sampling Design Examples
Coded Aperture Snapshot Spectral Imaging (CASSI)
A. Wagadarikar et al, “Single Disperser Design for Coded Aperture 
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Figures from paper.



Sampling Design Examples
Coded Aperture Snapshot Spectral Imaging (CASSI)
A. Wagadarikar et al, “Single Disperser Design for Coded Aperture 
Snapshot Spectral Imaging,” Applied Optics, vol 47, no. 10, 2008.

Figures from paper.



Can CS Apply to My Problem?

I. Think About Sampling 
• Can your sampling be re-designed to take advantage 

of randomness in the sampling procedure? 
•  Do you have a manner of efficiently imposing random 

projections in analog? 
•  Does this new procedure require sequential 

measurements? Is your signal time-varying? 
• Does knowledge of F require careful calibration?



Can CS Apply to My Problem?

II. Think About Reconstruction
• Is your signal sparse in the ambient domain? 
• If not, does there exist a sparse basis for which it is? 
• If not, do you have enough data to infer one? 
(Dictionary Learning) 

• Is the support of your signal correlated? 
-  E.g. wavelet-trees, etc. 

• What reconstruction methods are best suited for your 
signal dimensionality? 

- Trade-off in accuracy and efficiency… 
• Is your noise Gaussian? If not, does a reconstruction 
method exist for your noise model?



Questions?

Merci!

SPHINX @ENS
Statistical PHysics of INformation eXtraction 
«ou» 
Statistical PHysics of INverse compleX sysems


