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Inverse Problems

General Linear Problem: Y = ¢ (F X)

(M x N) (N x 1) (M x 1)

- ) |

Projection Matrix Signal? Channel Measurements

Compressed Sensing, Regression, Deconvolution/Debluring,
Localization, Super-Resolution, Medical Image Reconstruction
(CT/MRI), In-Painting, Denoising, Inference, etc.




Example — Compressed Sensing

y=Fx+w

w,, ~ N(0,A)

How do we obtain x from y knowing....

OLS is under-determined,
in general we can't!

g is AWGN,
X is K-Sparse,

F Is Ild random,

and M << N ”?

(EC & TT, 2005)
(EC, JR, & TT, 2006)
(EC & MW, 2008)

With Sparsity,
we can !




Sparsity & Recovery

For M>=K, we can recover with OLS, up to noise, if we are
given the support locations by an oracle.

L]
Il . -8

However: Without an oracle, finding S brute-force is a

combinatorial problem!

. —F 2
arg min |y — Fsxs||3




Optimization Approaches

y=Fx+w  w, ~N(0A)

Greedy Approach

% =argmin ||x|lp s.t. ||y — Fx||5 <e
X
x =argmin ||y — Fx|[5 st. [|x|lo < K

X

* Greedily searching for support, solving OLS support.

Convex Approach

% =argmin ||x|[1 s.t. ||y — Fx||5 <e
X
x = argmin ||y — Fx|[3 + Al[x||:

X

 Relax LO penalty to convex L1 penalty (“pointiest” convex Lp)



Phase Diagram tor CS

—StOMP [Donoho et al. 2006]
—£1 [Maleki et al. 2009]

—Oracle / Rephca




Bayesian Approaches

y=Fx+w  w, ~N(0A)

Maximum a posteriori (MAP)

x = argmax P(x|y,F)

* FInd signal to maximize probabillity.
e Can use unnormalized posterior — minimize negative log prob.
 For some settings — maps to convex optimization.

Minimum Mean Square Error (MMSE)

x = E|x| = /dx x P(x|y, F)

* Average over posterior distribution.



Defining the Posterior

Bayes' Rule

P(xly. F) = - P(ylx. F) Py(x)

Likelihood defined by stochastic description of g.

Posterior — Factorized Prior, AWGN Channel

1 1 1 2
P(X|Y»F):El;[ 27TA6XP{ I (yuZ:Fuzfo) }HPO(%')

For exact posterior, we must calculate an intractable Z!

Inference: \We can approximate it with Belief Propagation.



‘Graphical Model of Posterior
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Prior Coefficients Measurements

Loopy Belief Propagation — The presence of many loops makes exact

inference impossible, but approximate inference may be tractable and
“accurate” [Weiss 2000].




Inference via BP

Messages Messages
Variable — Factor Variable — Factor
Fo
Factors Variables Factors Factors Variables Factors
Prior Coefficients Measurements | Prior Coefficients Measurements

Goal: Produce

P(zily, F) oc Po(z:) | | musi(a)



r-BP to AMP via TAP

A Corrected Mean-Field (Donoho, Maleki, Montanari 2009)

It F Is dense and it its entries are uncorrelated, then message
means and variances are nearly independent of any single
edge message in the limit N— oo,

............

@ Onsager
@ Correction

Y, F

............

Big Savings: Compute Burden O(aN?) — O((1+ a)N)




r-BP/AMP with GB Prior

o | | N

0.7}

~——~StOMP [Donoho et al. 2006]
—(; [Maleki et al. 2009]

o —BP/AMP [Krzakala et al. 2012][
——Oracle/Replica
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r-BP/TAP Convergence

Small iteration count far from transition provides efficient estimation.

500 w 0.2
#BP iter. —
450 + B[P mgg ..............
400 + N b BEESPRay SSEEoseenos 015
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g 300 ¢ A=0, p=0.4 LuJ
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2 200}
150 | 0.05
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:-—BP"/AMP [Krzakala et al. 2012]] 0 : o' L\,“ ) 0
e ol 04 05 06 07 08 09 1
p=K/N
o (Krzakala et al., 2012)

However, the approach encounters critical slowing at or near the

transition, as shown via state evolution analysis.




Structured Signal Priors

But what if we have more information about our signal? Correlations?

Exact Inference Approximate Inference

Pairwise Interactions High Order Int.

For completely general visible models, see (Rangan et al, “Hybrid-GAMP”, 2012).



Regression & Latent Variables

Binary Restricted Boltzmann Machine (RBM)

1
PO (X, h) — = eyjil asz’Llhl_l_Zz bzxz‘|‘2l cihp

e | atent Model: Model data via a nonlinear composition of features.
e Unsupervised: Extract features from unlabelled training data.
* Tuning: Scale memorization/generalization via number of latent variables.
* Training: Sampling (Contrastive Divergence [Hinton 2002])
Mean-field (NMF [Welling, Hinton 2002], EMF [Gabrié, Tramel, Krzakala 2015])



AMP with RBM Support Prior

E.W.T, Dremeau, Krzakala, “AMP with Boltzmann machine priors,” JSTAT 2016.

Gabrie, EW.T, Krzakala, “Training RBMs with the TAP FE,” NIPS 2015.
e [or structured sparse signals, we can train a binary RBM to model the signal

support, subsequently use it in AMP.

. . . . | | ——Support Oracle
Prior Side Observation Side o451 | TAP RBM(500)

- > Z h 0.4} | ——NMF RBM(500)
non-iid AMP-GB
iid AMP-GB

0 0.2 0.4 0.6 08 1
Percent Successfully Recovered

Demonstrates: The RBM and AMP interact only via local

biases...inference on each essentially agnostic to the other.



AMP with General RBM Prior

A General RBM

PO(X7 h‘g) —

1
—e€

Z

x"Wh H Po(z;|0%) H Po(h;|6n)

e Using this generalized Boltzmann prior, we can model
nals directly, without invoking sparsity.
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AMP with General RBM Prior

A General RBM

Po(x,h|0) = — e WRTT Po(x:/0x) T [ Po(u|63)
') [

1

Z

e Exact knowledge of P(x) is intractable and sampling impractical for AMP.

TAP Approximation of GRBM

~ * ok, PAY * * * ok 1 * * ) 2 *
—In Z = F(a*,c ,H,W)—Zani(BiaAiaei)_ZBiai +§ZAi((ai) +¢;)

(4,7) (2,9)

h __ 2 h _ _h gh
M) = E Wi, B,=a,A,+ E Wi,ay
icV ieV
h __ rhy 4h h h __ rhs 4h h
a’p - fa (Ap,in)7 Cﬂ, - fc (Ap,) By,)?
v __ 2 _h V __ LV AV ~h
Al = — E Wi, B =a/A]+ E Wiua,,
peH neH

a; = fY(AMP 4 gAY BAMP 4 pv)
ci = fY(AMP 4 AY, BAMP 4 BY).

Inference: Moments at each
visible variable can be

approximated by
fixed-point iteration.




AMP with General RBM Prior

What does this algorithm look like?

Algorithm 1 AMP with GRBM Signal Prior

Input: F, y, W, 6", 6"
Initialize: a,c, t = 1
repeat
AMP Update on {Vm,wm} as in [12]
AMP Updat 12
pae0n2{2 Qpasm[ ]

Set AMP =1/ (22 Vi
(Re)lnitialize: a; = f,, (AAMP BMP) v, a,, = c =0Vu
repeat

Update { A}, B} as in (17)
Update {a.,q} as in (18), (19)
Update {A“,B,‘} as in (15)
Update {aj;, cp} as in (16)
until Convergence
a =y.att"D L (1-9)-a
ct) = ~. c(t— l)+(1_7) .

te—t+1
until Convergence on a y 4 b h




AMP with General RBM Prior

1. Update information from observation factors given current

state.

Algorithm 1 AMP with GRBM Signal Prior

Input: F, y, W, 6", 6"
Initialize: ac, t = 1
repeat

AMP Update on Vm,w,,.} as in [12]
AMP Update on {R;, X2}, as in [12]
Set AAMP — 1 /92 BAMP _ p /52y,

(Re)Initialize: a; = f; ( A"MP BKMP) Vi, a,, ch =0Vu
repeat

Update { A}, B} as in (17)

Update {a; q} as in (18), (19)

Update {A;, By} as in (15)

Update {a;.,cp} as in (16)
until Convergence
a =~.at"V 4 (1-4).a
c=q.ct"V4(1-9)-c
te—t+1

until Convergence on a y £ h




AMP with General RBM Prior

2. Calculate local fields from AMP to use as a bias during

GRBM inference.

Algorithm 1 AMP with GRBM Signal Prior

Input: F, y, W, 6", o"
Initialize: a,c, t = 1
repeat
AMP Update on {V;,,wm}, as in [12]
AMP Update on {R;, ¥?}, as in [12]
Set AMMP _ 1 /52 pAMP _ (2; Vi
(Re)lnitialize: a; = f. Afmp BMP) Vi, ap =ch =0V
repeat

Update { A}, B} as in (17)

Update {a; q} as in (18), (19)

Update {A3;, B} as in (15)

Update {a;.,cp} as in (16)
until Convergence

a =v.a"" V4 (1-9)-a

c =+~ c(t Dyr(1-9)-c
te—t+1
until Convergence on a T h




AMP with General RBM Prior

3. Run GRBM inference in order to obtain marginal estimate

of moments at each signal coetticient.

Algorithm 1 AMP with GRBM Signal Prior

Input: F, y, W, 6", o"
Initialize: a,c, t = 1
repeat
AMP Update on {V,,,wm}, as in [12]
AMP Update on {2&, zi), as in [12]
Set AMMP = 1/%2 BMMP = R, /%2 vi
(Re)Initialize: a; = fY(AMY, BMP) i, a"} = c:‘, =0Vu
repeat
Update {A}, B} as in (17)
Update {a;, c;} as in (18), (19)
Update {A}, B]:} as in (15)
Update {aj,, s} as in (16)
until Convergence
a(t) =y .a(t_l) + (l _7) -a
C(t) =7y .c(t"l) + (1 — 7) . C

t—t4+1
until Convergence on a T h




AMP with General RBM Prior

4. Apply light damping in order to avoid thrashing between

GRBM modes and repeat.

Algorithm 1 AMP with GRBM Signal Prior

Input: F, y, W, 6", o"
Initialize: a,c, t = 1
repeat
AMP Update on {V;,,wm}, as in [12]
AMP Update on {2&, z:“ﬁ, as in [12]
Set AMMP — 1/92 BAMP — R, /52 vi
(Re)Initialize: a; = fY(AMT, BAMP) v, az = c2 =0Vu
repeat
Update { A}, B} as in (17)
Update {ai,c;i} as in (18), (19)
Update {A}}, B}.} as in (15)
Update {a;.,cp} as in (16)
until Convergence
al) =4.att"1) 4 (1-7)-a
c(t) =- c(t-l) + (1 — 47) . C
t—t+1

until Convergence on a y € 4 b h

Extra Cost: Proportional to the number of interior steps you

take, though can be set < 10.




Experimental Framework

Offline Training non-iid. BRBM GRBM
60k real-valued MNIST training samples
784 (28x28) Trunc. Gauss-Bernoulli Visible
500 Binary Hidden

100 sample mini-batches

150 Epochs (90k parameter updates)

v Vv Vv VvV Vv

a = 0.000 a = 0.025

Reconstruction

» 1k real-valued MNIST test samples (h.o.)
» Noise Variance: 108

» |ID Random Projection Matrix F

0.100 a = 0.075

Methods

» non-.i.i.d. — Use empirical support probability
with GB prior AMP.

» BRBM — Binary RBM to model support location.

»  GRBM — Generalized RBM to model entire signal.

8}

a=0.125

(Tramel et al., 2016)



AMP with General RBM Prior
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Learning GRBMs — Open Work

o O1

. What can be gained with deep architectures?

(a) Can we push the boundaries even further with DBMs?

. Is there an upper limit?

(a) What can we learn from density evolution in random case”?

. Further experiments on non-sparse data.

(a) Can an RBM be trained to a sufficient level to allow for CS-like reconstruction
of non-sparse structured signals?

. Time Indexing.

(a) Parallel time indexing for BP on pairwise graphical models not set in stone...
(b) Need to “re-derive” time indices via pairwise r-BP.

. Comparison with r-BP learning.
. The Influence of Hidden Unit Distribution

(a) E.g. Gauss-Bernoulli hidden units to allow for modeling of visible covariance
structure (ala SS-RBM).
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Supplements



Learning GRBMs

How do we train the necessary GRBM models”

lterating the same equations allows us to
evaluate the TAP f.e. approximation of the
GRBM.

=> Stochastic Gradient Ascent on dataset
likelihood.

Ah=-Y"W2c¢f, Bh=alAh+Y Wiay,

icV icV

ay = f (AL, Bn),  cu = [ (A, By),

Al = — Z W,-zﬂcz, B! =a]A] + Z W,-,,az,
peH neH

a; = fy (AMT + A}, BM + BY),

ci = f2(AMMP 4 AY BAVP 4 BY),

Biggest Issue...

. . o —
Inescapable negative variances! Signed definition A= S W

required to make messages Gaussian, but now it bites iev

us. What to do?

Current sol'n: Truncated Distributions, allow neg. vars!

A‘-’=—X:W2c'rl

U Ty
peEH




Learning GRB

Ms

For a Gaussian distributed unit...

o= BtU _
T A4V

T|[A+V|

% —e®a

Erfigy,]—Erfiga]’ for A4+V <0

= %o —e—%a for A4V
2. md’u]—Erﬁ%l 2 L + >0

1 (B+

U)*

2 _
(&ow = a7 v (A+

V)?
A+V

(w+ B2y exp T v’

—(a+ BtU)exp~ F (- XV’

2
@y

Erf[\/@(w - %:Lg)] - Erf[\/@(a - g—;—g)]

(37)

The "ERF - ERF in the denominators make for terrible
numerical issues for sufficiently likely arguments.
- We “solved” via high-order Taylor approximation.

Not themes elegant solution...




Relaxed BP (r-BP)

Problems

* Analytically intractable messages.

 Messages are continuous objects (PDFs), not fit for a
computable algorithm.

Assumption

« All values of F scale as O(1/N).

Remedy (Rangan, 2010), (Krzakala et al., 2012)

* (Given the above, we can perform a small-weight expansion on
the messages, allowing for all messages to be written as
Normal Distributions via the CLT, and are parameterized by...

Aisy = /dafq; i, (25), Vi, = —(ai,)° /dflzi rimi ()




AMP with RBM Support Prior

(Tramel, Drémeau, Krzakala, 2016)

0.5 0.5 . :

0.45 L Support Oracle 045l ——"TAP RBM(500)

[ | ——TAP RBM(500) MF RBM(500)

0.4} NMF RBM(500) 0.4 non-iid AMP-GB

non-iid AMP-GB iid AMP-GB

035 iid AMP-GB 035
<. 03 2, 03
S S~
~ ~
=~ 0.25 = 0.25
| |
= 0.2 - 0.2

0.15 0.15

0.1 0.1

0.05 0.05

0 I i i i i 0 A i i 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Percent Successfully Recovered Support Correlation (MCC)

MNIST Experiments — Goal: CS reconstruction of 300 test
set digits given training set of 60,000 samples.



AMP with RBM Support Prior
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decreasing measurements
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(Tramel, Drémeau, Krzakala, 2016)

1 ")’7’7777777
73032 ) ) )

decreasing measurements

(a) i.i.d. GB-AMP, (b) non-i.i.d. GB-AMP,
(c) naive mean-field RBM-AMP
(d) TAP mean-field RBM-AMP



