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Inverse Problems

⇥

Signal?Projection Matrix Channel Measurements

(N ⇥ 1)(M ⇥N) (M ⇥ 1)

gF x

y

General Linear Problem: y = g (Fx)

Compressed Sensing, Regression, Deconvolution/Debluring, 
Localization, Super-Resolution, Medical Image Reconstruction 

(CT/MRI), In-Painting, Denoising, Inference, etc.



Example —  Compressed Sensing

How do we obtain x from y knowing….
y = Fx+w wµ ⇠ N (0,�)

F
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x+ s

With Sparsity,
we can !

OLS is under-determined,  
in general we can’t!

F
x

y

x+ sNull(F )

(EC & TT, 2005) 
(EC, JR, & TT, 2006) 
(EC & MW, 2008)

• g is AWGN,  
• x is K-Sparse,  
• F is iid random, 
• and M << N ?



Sparsity & Recovery
For M>=K, we can recover with OLS, up to noise, if we are 
given the support locations by an oracle.

= ⇥ ⇥=

However: Without an oracle, finding S brute-force is a 
combinatorial problem! 
argmin

S2S
||y � FSxS ||22



Optimization Approaches
y = Fx+w wµ ⇠ N (0,�)

x̂ = argmin
x

||x||0 s.t. ||y � Fx||22  ✏

x̂ = argmin
x

||y � Fx||22 s.t. ||x||0  K

Greedy Approach

x̂ = argmin
x

||y � Fx||22 + �||x||1

Convex Approach
x̂ = argmin

x

||x||1 s.t. ||y � Fx||22  ✏

• Greedily searching for support, solving OLS support.

• Relax L0 penalty to convex L1 penalty (“pointiest” convex Lp)



L1 √

St
OM

P 
√

NP-H
ard

?

Un-R
ec

ove
rab

le

Phase Diagram for CS



Bayesian Approaches

ˆ

x = argmax

x

P (x|y, F )

y = Fx+w wµ ⇠ N (0,�)

Maximum a posteriori (MAP)

• Find signal to maximize probability. 
• Can use unnormalized posterior — minimize negative log prob. 
• For some settings — maps to convex optimization.

x̂ = E[x] =
Z

dx x P (x|y, F )

Minimum Mean Square Error (MMSE)

• Average over posterior distribution.



Bayes' Rule

Defining the Posterior

P (x|y, F ) =
1

Z
P (y|x, F )P0(x)

Posterior — Factorized Prior, AWGN Channel

P (x|y, F ) =
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Likelihood defined by stochastic description of g.

For exact posterior, we must calculate an intractable Z!
Inference: We can approximate it with Belief Propagation.



Graphical Model of Posterior

Loopy Belief Propagation — The presence of many loops makes exact 
inference impossible, but approximate inference may be tractable and 
“accurate” [Weiss 2000].

Variables
Coefficients

Factors
Measurements

Factors
Prior

x1

x2

x3

xN

y1, F1

y2, F2

yM , FM

P (y|Fx)P0(xi)



Inference via BP

Variables
Coefficients

Factors
Measurements

Factors
Prior

x1

x2

x3

xN

y1, F1

y2, F2

yM , FM

P0

mi!µ(xi)
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Messages 
Variable → Factor 

Messages 
Variable → Factor 

Variables
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Measurements

Factors
Prior

x1
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x3

xN

y1, F1
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P0

mµ!i(xi)
PDFs

Goal: Produce 
P (xi|y, F ) / P0(xi)

Y

µ

mµ!i(xi)



r-BP to AMP via TAP
A Corrected Mean-Field (Donoho, Maleki, Montanari 2009)

If F is dense and if its entries are uncorrelated, then message 
means and variances are nearly independent of any single 
edge message in the limit N→∞.

Big Savings: Compute Burden O(↵N2) ! O((1 + ↵)N)

y1, F1

y2, F2

yM , FM

xiP0(xi)

Onsager
Correction

x1

x2

x3

xN

yµ, Fµ



NP-H
ard

?

Un-R
ec

ove
rab

leBP/AMP √

L1 √

St
OM

P 
√

r-BP/AMP with GB Prior



r-BP/TAP Convergence

(Krzakala et al., 2012)

Small iteration count far from transition provides efficient estimation.

However, the approach encounters critical slowing at or near the 
transition, as shown via state evolution analysis.



Structured Signal Priors

x1 x2
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Exact Inference Approximate Inference

Pairwise Interactions High Order Int.

For completely general visible models, see (Rangan et al, “Hybrid-GAMP”, 2012).

But what if we have more information about our signal? Correlations?



Regression & Latent Variables

Binary Restricted Boltzmann Machine (RBM)

P0(x,h) =
1

Z e
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• Latent Model: Model data via a nonlinear composition of features. 
• Unsupervised: Extract features from unlabelled training data. 
• Tuning: Scale memorization/generalization via number of latent variables. 
• Training:  Sampling (Contrastive Divergence [Hinton 2002]) 

     Mean-field (NMF [Welling, Hinton 2002], EMF [Gabrié, Tramel, Krzakala 2015])



AMP with RBM Support Prior

•  For structured sparse signals, we can train a binary RBM to model the signal 
support, subsequently use it in AMP. 

Demonstrates: The RBM and AMP interact only via local 
biases…inference on each essentially agnostic to the other.

E.W.T, Drémeau, Krzakala, “AMP with Boltzmann machine priors,” JSTAT 2016. 
Gabrié, E.W.T, Krzakala, “Training RBMs with the TAP FE,” NIPS 2015. 



AMP with General RBM Prior

• Using this generalized Boltzmann prior, we can model 
signals directly, without invoking sparsity.

A General RBM
P0(x,h|✓) =

1

Z e
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TAP Approximation of GRBM

AMP with General RBM Prior

•Exact knowledge of P(x) is intractable and sampling impractical for AMP.

A General RBM
P0(x,h|✓) =

1

Z e
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)
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Inference: Moments at each 
visible variable can be 

approximated by  
fixed-point iteration.
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AMP with General RBM Prior
What does this algorithm look like?



AMP with General RBM Prior
1. Update information from observation factors given current 

state.



AMP with General RBM Prior
2. Calculate local fields from AMP to use as a bias during 

GRBM inference.



AMP with General RBM Prior
3. Run GRBM inference in order to obtain marginal estimate 

of moments at each signal coefficient.



AMP with General RBM Prior
4. Apply light damping in order to avoid thrashing between 

GRBM modes and repeat.

Extra Cost: Proportional to the number of interior steps you 
take, though can be set < 10.



Experimental Framework
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(Tramel et al., 2016)

Offline Training
‣ 60k real-valued MNIST training samples 
‣ 784 (28x28) Trunc. Gauss-Bernoulli Visible 
‣ 500 Binary Hidden 
‣ 100 sample mini-batches 
‣ 150 Epochs (90k parameter updates) 

Reconstruction
‣ 1k real-valued MNIST test samples (h.o.) 
‣ Noise Variance: 10-8 

‣ IID Random Projection Matrix F

Methods
‣ non-.i.i.d. — Use empirical support probability 

with GB prior AMP. 
‣ BRBM — Binary RBM to model support location. 
‣ GRBM — Generalized RBM to model entire signal.

Measure — Reconstruction quality as a function of number of measurements.



AMP with General RBM Prior
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Learning GRBMs — Open Work
1. What can be gained with deep architectures?

(a) Can we push the boundaries even further with DBMs? 
2. Is there an upper limit?

(a) What can we learn from density evolution in random case? 
3. Further experiments on non-sparse data.

(a) Can an RBM be trained to a sufficient level to allow for CS-like reconstruction 
of non-sparse structured signals? 

4. Time Indexing.
(a) Parallel time indexing for BP on pairwise graphical models not set in stone… 
(b) Need to “re-derive” time indices via pairwise r-BP. 

5. Comparison with r-BP learning.
6. The Influence of Hidden Unit Distribution

(a) E.g. Gauss-Bernoulli hidden units to allow for modeling of visible covariance 
structure (ala SS-RBM).
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Learning GRBMs
How do we train the necessary GRBM models?

Iterating the same equations allows us to 
evaluate the TAP f.e. approximation of the 
GRBM.  

=> Stochastic Gradient Ascent on dataset 
likelihood.

Biggest Issue…

Inescapable negative variances! Signed definition 
required to make messages Gaussian, but now it bites 
us. What to do? 

Current sol’n: Truncated Distributions, allow neg. vars!



Learning GRBMs

For a Gaussian distributed unit…

The `ERF - ERF` in the denominators make for terrible 
numerical issues for sufficiently likely arguments. 

- We “solved” via high-order Taylor approximation.
Not themes elegant solution…



Relaxed BP (r-BP)
Problems
• Analytically intractable messages. 
• Messages are continuous objects (PDFs), not fit for a 

computable algorithm.

Assumption
• All values of F scale as O(1/N).

Remedy (Rangan, 2010), (Krzakala et al., 2012)
• Given the above, we can perform a small-weight expansion on 

the messages, allowing for all messages to be written as 
Normal Distributions via the CLT, and are parameterized by…

ai!µ ,
Z

dxi ximi!µ(xi), vi!µ , �(ai!µ)
2 +

Z
dxi x

2
imi!µ(xi)



AMP with RBM Support Prior

MNIST Experiments — Goal: CS reconstruction of 300 test 
set digits given training set of 60,000 samples.

(Tramel, Drémeau, Krzakala, 2016)



AMP with RBM Support Prior

a
b
c

a
b

d

c
d

decreasing measurements decreasing measurements 
(a) i.i.d. GB-AMP, (b) non-i.i.d. GB-AMP, 
(c) naive mean-field RBM-AMP 
(d) TAP mean-field RBM-AMP

(Tramel, Drémeau, Krzakala, 2016)


