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Discrete Reconstruction 
for Electron Tomography



STEM for Tomography
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Acquisition
Series of micrographs acquired at  
varying sample tilt angles.
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Goal: Recover volume/model of specimen 
from minimal number of tilt-angle micrographs.



One-step Reconstruction (2D)
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(Otsu’s Method)



Tomography as Linear Problem

Density 1
Density 2
Density 3

Observation at angle θ
y✓ = hF✓,xi

y = Fx+w possible noise

Tomographic Recovery  
is essentially solving a linear 
system of equations.



Algebraic Recovery Methods (ARM)
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Simultaneous Algebraic Rec.

Simultaneous Iterative Rec.



Algebraic Recovery Methods (ARM)
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20 Angles [0,180]

Prior Information
Iterative ARM allows for 
non-negativity constraint. 
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Total Variation Minimization
Prior Information:
Reconstructed images should be “smooth”.

e.g. penalize discontinuities 
in image.

min
x

||x� Fy||22+
X

i,j

q
(rhxi,j)2 + (rvxi,j)2



Total Variation Minimization

TVF
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Prior Information
Enforce piece-wise continuity (smoothness)
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Discrete ART (DART)

Prior Information:
Elements (pixels/voxels) of the 
volume belong to a small set of 
values. 

➡ An EM-like procedure on top 
of ARM reconstruction. 

➡ Inherently greedy/empirical 
technique

Segmentation ARM Iterations 
on Boundaries

Smooth 
Boundaries Converged?



Discrete ART (DART)
Prior Information
Elements (pixels/voxels) of the volume belong to a small 
set of values. Here: {0,1}.

DARTF

y

x

20 Angles [0,180] 6 312 Errors



Inverse Problems

General Linear Problem:

⇥

Signal
Prior Model?

Projection Matrix
• iid Random ? 
• Underdetermined? 
• Low Rank? 
• Sparse?

Channel
•Corruption 
•Information Loss 
•Noise Model?

Measurements
Observed Data

(N ⇥ 1)(M ⇥N) (M ⇥ 1)

y = g (Fx)

gF x y



Ex: Compressed Sensing

CS Problem: How do we obtain x from y and F knowing 
g = AWGN & x is K-Sparse?

x̂ = argmin
x

||x||0 s.t. ||y � Fx||22  ✏

x̂ = argmin
x

||y � Fx||22 + �||x||1 (LASSO)

(Greedy)

(MMSE)

(MAP)x̂ = argmax
x

P (x|y, F )

x̂ = E[x] =
Z

dx x P (x|y, F )

y = Fx+w wµ ⇠ N (0,�)

Deterministic

Probabilistic



Posterior Probability
Full Posterior
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Normalization (intractable)

AWGN Observation Model
Prior Model



BP & Combining Priors
For Binary Images:
Can use an Ising prior 
and  solve for MMSE 
solution using Belief Prop. 

Key: 
Prior Model is both 

discrete and enforces 
smoothness.
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BP & Combining Priors

y✓,1

y✓,2

y✓,3y ,3

y ,2
y ,1

Variables (pixels)

Factors along angle θFactors along angle 𝝍

Each factor measures one line of pixels.

x1 x2 x3 x4 x5

yµ
Factor-variable Messages

mµ!i(xi)

mi!µ(xi)

Variable-variable Messages
⌘Li!i+1(xi)

⌘Ri!i�1(xi)

States along lines should be correlated with neighbors.



BP & Combining Priors

(Gouillart et al, 2013)

BP

TV

�/L = 0.002

↵ = 1/10,�/L = 0.006

(Gouillart et al, 2013)



Modifying the Prior
Lattice Correlations. A full model of the entire signal that 
incorporates local correlations. (related: MRFs)

Caution Many tight loops, we 
cannot expect perfection.

Advantages  
• Perhaps a more accurate image model 
• Adaptable correlation model (edges & 

weights) that can possibly be trained to 
exemplars 

• Known results from familiar models 
• Prior model is not dependent on sampling 

scheme.



Standard Potts Model Prior

A Potts Model We can generalize the Ising model as a two-
state Potts model. The Potts model allows us to model any 
number of possible states (gray levels).

P0(x) =
1

Z e�H(x) for xi 2 {⌧1, ⌧2, . . . , ⌧Q}

Some local biasing

�H(x) = ⌘
X

hi,ji

�(xi, xj) +
X

i

h(xi)

Penalize Differing Neighbors

Direct Problem: Can solve Potts  
systems with Extended mean-field  
(Onsager Correction).



BP to AMP via TAP
TAP Intuition (Extended Mean-Field)
If F is not sparse and if its entries scale O(1/√N), then 
message means and variances are nearly independent of 
any single edge message in the limit N→∞.

{ai, vi} {!µ, Vµ}

N M

{!µ, Vµ}{ai, vi}

N M

Big Savings: Compute Burden O(↵N2
) ! O((1 + ↵)N)



Potts+AMP

Observations

Beliefs from Observations

Beliefs from Potts Model
Fixed-point 

iteration until 
convergence

AMP fixed-point 
updates on variational 

distributions.

Solve for Free Energy 
Minimizing Potts trial 

distribution.

Single fixed-
point iteration.

Until 
Convergence



Preliminary Results: Dataset
Carbon Nanotube containing CoO crystals 
HAADF-STEM in Chemical Mode (low SNR from binning) 
49 viewing angles between +\- 62.52deg 
512x512 resolution micrographs (downsampled to 129x129)

Carbon Cobalt Oxygen

Data: Acquired @ IPCMS, Université de Strasbourg



Preliminary Results: Composite
Recovered Volume: 129x129x129 

Carbon Cobalt Oxygen
25 Iterations. 
Random projection update order.



Preliminary Results: Composite
Recovered Volume: 129x129x129 

Initialized with 25 iteration SART recovery. 
4 Colors per element recovery. 
Interior ARM: 25 iteration SART. 
“Unfix” probability: 0.95 
10 DART iterations (converged quickly)

Carbon Cobalt Oxygen



Preliminary Results: Composite

Carbon Cobalt Oxygen

Recovered Volume: 129x129x129 

⌘ = 0.7

30 AMP Iterations 
20 inner Potts/TAP iterations 
4 Colors per element recovery 
Noise Variance learned online



Preliminary Results: Composite



Conclusions
Potts+AMP
✓ Can be used in more general settings, i.e. different noise 

channels. 
✓ Adaptable lattice structure. 
✓ Incorporates both discrete and structured priors. 
✓ Extensible to hierarchical prior models. 
➡Still many free parameters to tune (coupling strength, etc.) 
➡Efficiency still a hindrance.

Open Questions
๏ Can the coupling be learned on-line? 
๏ Can the alphabet size and values be learned a posteriori ? 
๏ Can adaptive damping aid convergence speed? 
๏ What is the best noise model for HAADF-STEM?



Questions?

Merci!

SPHINX @ENS
Statistical PHysics of INformation eXtraction 
«ou» 
Statistical PHysics of INverse compleX sysems
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