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The compressed sensing (CS) model of signal processing, while offering many unique

advantages in terms of low-cost sensor design, poses interesting challenges for both signal

acquisition and recovery, especially for signals of large size. In this work, we investigate

how CS might be applied practically and efficiently in the context of natural video. We

make use of a CS video acquisition approach in line with the popular single-pixel cam-

era framework of blind, non-adaptive, random sampling while proposing new approaches

for the subsequent recovery of the video signal which leverage inter-frame redundancy to

minimize recovery error. We introduce a method of approximation, which we term multi-

hypothesis (MH) frame prediction, to create accurate frame predictions by comparing hy-

potheses drawn from the spatial domain of chosen reference frames to the non-overlapping,

block-by-block CS measurements of subsequent frames. We accomplish this frame predic-

tion via a novel distance-weighted Tikhonov regularization technique. We verify through

our experiments that MH frame prediction via distance-weighted regularization provides



state-of-the-art performance for the recovery of natural video sequences from blind CS

measurements.

The distance-weighted regularization we propose need not be limited to just frame

prediction for CS video recovery, but may also be used in a variety of contexts where

approximations must be generated from a set of hypotheses or training data. To show this,

we apply our technique to supervised hyperspectral image (HSI) classification via a novel

classifier we term the nearest regularized subspace (NRS) classifier. We show that the

distance-weighted regularization used in the NRS method provides greater classification

accuracy than state-of-the-art classifiers for supervised HSI classification tasks. We also

propose two modifications to the core NRS classifier to improve its robustness to variation

of input parameters and and to further increase its classification accuracy.

Key words: Compressed Sensing, Video Compression, Block Compressed Sensing, Su-

pervised Classification, Hyperpsectral Imagery
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CHAPTER 1

INTRODUCTION

Compressed sensing (CS) [14, 17], a new signal-sampling and recovery model, has

emerged in recent years with much excitement and many papers detailing its impact on

many different areas of research such as natural-image acquisition, remote sensing, cogni-

tive radio, and medical imaging, just to name a few. CS combines both signal acquisition

and dimensionality reduction into a single step, potentially reducing computational and

hardware burdens on sensing devices. The promise of CS to lower sampling costs or to in-

form more effective signal-recovery strategies has even helped to open new avenues, such

as terahertz imaging [20] and single-pixel cameras [35].

For these applications, research has largely focused on the blind recovery of CS-acquired

signals. Much work has been done in this area with many different varieties of solvers pro-

posed over the past several years in an effort to decrease recovery computation time with-

out sacrificing distortion performance. For the most part, these reconstruction strategies

are oblivious to the structure of the signal being recovered beyond a general assumption

of sparsity, or compressibility, in some transform basis. Recently, however, several re-

construction techniques have focused on situations in which side information about signal

content is available to aid signal recovery. Some proposed methods, such as Bayesian CS
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[54] as well as model CS [37, 4], exploit certain a priori knowledge of signal structure, or

the probability thereof, to guide recovery. These methods, however, do not directly address

the situation in which one or more predictions of the signal to be recovered are available

to the CS reconstruction process. Signal prediction techniques are especially prevalent in

video-processing applications such as source coding. Typically in video coding, one or

more reference frames are used to make predictions of some target frame such that the

resulting residual frame representing the difference between the two has dramatically low-

ered signal energy leading to more efficient representation and processing.

In this dissertation, we consider the CS recovery of video sequences in which frame-

to-frame predictions are used to aid the CS-recovery process. In effect, we perform CS

recovery on the prediction residual which is, in most cases, significantly more compress-

ible than the original frame, resulting in a higher-quality CS recovery. Key to our approach

is the use of motion estimation (ME) and motion compensation (MC) such that the frame-

to-frame predictions compensate for object motions between frames. Such use of ME/MC

derives from traditional video-compression algorithms which make extensive use of so-

phisticated MC strategies.

One form of MC widely employed in traditional video compression is that of multihy-

pothesis (MH) prediction in which multiple, distinct predictions are created and then com-

bined to yield a composite prediction superior to any of the constituent single-hypothesis

(SH) predictions [98]. As a primary contribution of this dissertation, we show how such

MH prediction can be incorporated into the CS recovery of video sequences so as to in-

crease reconstruction quality over equivalent SH-driven recovery. Central to this discussion
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is a formulation of the MH prediction process in the domain of the random CS projections;

as this formulation results in a ill-posed optimization, we resort to Tikhonov regulariza-

tion [103] which is widely used to yield tractable solutions to such ill-posed problems. In

experimental results, we compare our proposed Tikhonov-based regularization against an

alternative strategy enforcing an `1-based sparsity constraint on the MH predictions [30].

We find that our proposed approach usually yields significantly superior reconstruction,

particularly when the video frames are acquired at very low subsampling rate.

We have published a number of papers which make use of side information to aid CS

recovery of images. In one set of papers, we considered the application of prediction-

aided residual recovery for single views from a multiview image set [105] as well as for

an entire set of images using successive stages of recovery [106]. We combined the ideas

presented in these two conference papers in the journal article [107], which is currently in

review. We have also written specifically on the topic of video recovery in two conference

papers [104, 21]. We have also written a comprehensive long-form work on block-based

CS of still images and video using the techniques proposed here in [42]. We additionally

presented an extension of the block-based compressed sensing with smoothed projected

Landweber (BCS-SPL) [76, 77] acquisition and recovery framework, multiscale BCS-SPL

(MS-BCS-SPL), which performs acquisition within the wavelet domain [41].

Additionally, we discuss an extension of the MH technique for supervised classifica-

tion tasks, which we term the nearest regularized subspace (NRS) classifier. Specifically,

we investigate the effectiveness of the NRS classifier for hyperspectral classification tasks

when operating on hyperspectral-image (HSI) data acquired from aerial platforms. In our

3



experiments we show how this technique achieves better average classification accuracy

performance compared to other state-of-the-art HSI classification techniques. The NRS

classifier was initially presented in a journal article [66] which is still under review.

The remainder of this dissertation is organized as follows. A brief background on

source coding for images and video as well as compressed sensing is given in Chapter 2.

In Chapter 3, we cover common methods of acquiring CS measurements for images and

video as well as practical methods for their recovery. After this, in Chapter 4, we propose a

method whereby a prediction of a given frame is made using block-based CS measurements

of the frame in addition to previously recovered reference frames. The video-recovery

performance results are also given in this chapter for the proposed methods. In Chapter

5, we cover the NRS classifier and its applications to supervised HSI-classification tasks.

Chapter 6 covers the conclusions of our findings in this dissertation as well as suggesting

an outline for future work in the area CS video recovery.
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CHAPTER 2

BACKGROUND

2.1 Natural-Image and Video Coding

In traditional source coding, a signal is known by an encoder, which then chooses

the most effective strategy for representing the given signal in a compressible manner in

order to decrease the description length of the signal. This has the effect of reducing the

dimensionality of a given signal by only storing or transmitting the most important pieces

of information about the signal in question to a decoder.

By compressible, we mean that only a small number of values can be used to either

perfectly represent a given signal, as in lossless coding, or approximately representing a

signal by incurring error, as in lossy coding. We call a signal compressible if there is some

method, such as a decorrelating transform like the Fourier or wavelet transforms, by which

we can represent the signal with coefficients obeying a power-law decay in magnitude

[5, 36].

This property of compressible signals means that most of the coefficients within the

transform basis are near zero in magnitude, and can therefore be thought of as insignificant

in terms of representing the signal. Often, insignificant coefficients are dropped during

lossy encoding in order to decrease the number of bits needed to store or transmit a signal.
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If this is done properly, the loss of these small-magnitude coefficients when the other coef-

ficients are received and inverted back to the original signal domain by the decoder should

make only a very small perceptual difference.

The manner in which the most important pieces of information are chosen or rep-

resented is highly dependent upon the type of signal being encoded. For natural im-

ages, it is well known that the blocked discrete cosine transform (DCT) and the two-

dimensional discrete wavelet transform (2D-DWT) perform the task of decorrelation and

energy compaction very well. JPEG, one of the most commonly used image-encoding

formats, performs a block DCT followed by a quantization step and run-length encoding.

JPEG2000, a more modern image-encoding standard, uses the 2D-DWT, quantization, em-

bedded block coding with optimal truncation (EBCOT), and an arithmetic coder to provide

better compression-to-quality performance than JPEG.

Traditional video coding operates in somewhat the same manner as image coding, ex-

cept with the addition of another dimension to the signal, a temporal axis. Trivial imple-

mentations of video encoding simply apply an image encoder, such as JPEG, to each frame

in the video sequence. However, this does not employ any kind of temporal decorrelation,

effectively throwing out an entire dimension of the signal in terms of compression. In

video-coding standards such as H.264, temporal decorrelation is implemented by creating

predictions of frames in the sequence from previously encoded frames. By subtracting

a prediction from each inter-predicted frame in the sequence, a residual frame is left be-

hind which is much more compressible than the original frame. The effectively removes

redundancy across the temporal axis.
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In order to create frame predictions, the content of a reference frame is rearranged

to represent a target frame. The most common method for doing this is through motion

estimation and motion compensation (MEMC)). In MEMC prediction, the target frame is

split into blocks. A sliding-block search is then conducted on the reference frame to find

a block which best matches the target block according to some distance metric such as

mean squared error (MSE) or mean absolute difference (MAD). A set of displacement,

or motion, vectors are then transmitted along with the encoded residual frame in order

to describe how to permute the decoded reference frame to recreate the prediction at the

decoder side so that it can be added back to the decoded residual frame.

It is our intention to use knowledge of traditional video coding in order to better inform

the recovery of video signals which have been acquired using a CS device. In the next

section, we will overview CS theory.

2.2 Compressed Sensing (CS)

In essence, CS combines signal acquisition and compression by measuring the linear

projection of a given signal, x 2 RN , using some projection operator, � 2 RM⇥N , where

M ⌧ N ; i.e.,

y = �x, (2.1)

where y 2 RM 1. The “compression” in CS is the dimensionality reduction of the original

signal via linear projection with �. We measure the degree of dimensionality reduction via

the subsampling rate, or subrate, S = M/N . In this framework, x remains unknown to the
1While CS can indeed be adapted to operate on complex valued or continuous-time signals, our work is

limited in scope to discrete-time signals consisting of real-valued entries
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receiver, and so the task of the receiver is then to recover an approximation of this original

signal from y.

From [14, 17], we know that, if x is sufficiently sparse, or compressible [49], in some

transform basis  , then x is recoverable from y by via Basis Pursuit (BP),

x̂ = argmin

✓

k✓k1 s.t. y = A✓, (2.2)

where A = � 

�1. The BP is an example of a linear program (LP), and as such, is solv-

able using well known approaches such as interior-point and simplex methods, or even

iteratively reweighted least squares [28]. The exact recovery of x is conditioned upon

M sufficiently large and A obeying the Restricted Isometry Property (RIP) for small �
s

.

According to [15], the RIP is defined as:

For each integer s = 1, 2, . . . , define the isometry constant �
s

of a matrix � as the

smallest number such that

(1� �
s

) ||x||22  ||Ax||22  (1 + �
s

) ||x||22 (2.3)

holds for all s-sparse vectors. A vector is said to be s-sparse if it has at most s nonzero

entries.

The magnitude of �
s

for which the RIP holds denotes the degree to which the projected

space of A preserves distance relationships from the original high-dimensional space. It

was shown in [16] that if A obeys

�
s

+ �2s + �3s < 1, (2.4)

then any s-sparse vector can be recovered from its projection by A by solving (2.2) for M

sufficiently large.
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Since the sensor will only observe the projection of x by � and is, in general, agnostic

to any model prior for x outside of sparsity, it is important choose � which minimizes the

�
s

of A for the widest range of possible  . In [11], random matrices with i.i.d entries,

such as those drawn from N (0, 1
N

), or from ± 1p
N

uniformly, are shown to serve well in

this capacity. Random matrices maximize the mutual incoherence between � and any

structured  [17]. Mutual incoherence between any two matrices is defined as

µ (�, ) =
p
N max

1k,jN

| h�
k

, 
j

i | 2
h
1,
p
N
i
. (2.5)

Using the mutual incoherence, we can also determine how many measurements are re-

quired to guarantee recovery for the s-sparse approximation of x in the sparse-representation

domain of  . Specifically, if

M � C · µ2
(�, ) · s · log(N), (2.6)

where C is some positive constant, then the exact recovery is guaranteed with overwhelm-

ing probability using (2.2) [17].

However, in practical applications where the nature of x is not exactly known a priori,

there are a few barriers which impede exact signal recovery [10]. First, most natural signals

are not truly sparse in any transform basis . Second, noise may be present during acquisi-

tion, corrupting the measurements. Because of these issues, the equality constraint of (2.2)

is commonly relaxed to a bound on the residual, giving some slack to the minimization

while enforcing consistency between the minimizer and the measurements,

x̂ = argmin

✓

k✓k1 s.t. ky � A✓k2  ✏, (2.7)
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thus rephrasing the recovery problem as a quadratically constrained linear program (QCLP).

In practice, an unconstrained version of (2.7), known as basis pursuit denoising (BPDN),

is commonly used [23],

x̂ = argmin

✓

1

2

ky � A✓k22 + � k✓k1 . (2.8)

Many different approaches to solving (2.8) have been proposed, such as gradient pro-

jection [40], iterative thresholding [27], Bregman iterations [121], and homotopy contin-

uation [71] to name a few. The BPDN is closely related to another approach to sparse

regularization, the least absolute shrinkage and selection operator (LASSO) [102],

x̂ = argmin

✓

||y � A✓||22 s.t. ||✓||1  K, (2.9)

which maybe be solved through least-angle regression (LARS) [39], or through other, more

general, solutions to convex optimization.

Another approach to CS recovery focuses on the sparse “mother” problem, the `0-

regularized minimization,

x̂ = argmin

✓

k✓k0 s.t. y = A✓, (2.10)

and, specifically, its related relaxed forms,

x̂ = argmin

✓

||y � A✓||22 s.t. ||✓||0  K, (2.11)

and

x̂ = argmin

✓

||y � A✓||22 + �||✓||0. (2.12)

While the `0 semi-norm is optimal for enforcing sparse signal support, its non–

differentiability means that solving (2.10)-(2.12) is a combinatorially hard problem. For
10



this reason, [16] originally proposed the `1 convex relaxation of (2.10) to BP. This relax-

ation comes with the penalty of stricter requirements on the size of �
s

[15]. However,

(2.11)-(2.12) may be solved in a greedy fashion using orthogonal matching pursuit (OMP)

[108], and its related family of methods including stagewise OMP (StOMP) [33], regular-

ized OMP (ROMP) [79], sparsity adaptive matching pursuit (SAMP) [31], and compressive

sampling matching pursuit (CoSaMP) [80]. Additionally, it was shown in [8] that certain

forms of iterative hard thresholding (IHT) may also solve (2.11)-(2.12).

Central to all of these recovery methods is a tradeoff between recovery time, compu-

tational complexity, and the quality of the recovery for a given subrate S. All of these

different approaches to recovering x from y, however, require a significant amount of

computation for N large. The significant resources required for CS reconstruction has

been a significant impediment to the widespread implementation of CS sampling for high-

dimensional signals such as natural images and video. Next, we look at the CS framework

and how it can be modified to better suit such signals.

2.3 Compressed Sensing of Images

2.3.1 Acquisition

From the discussion of the framework given in the previous section alone, it is not read-

ily apparent how a CS imaging device might be constructed. While it would be possible

to sample an entire image with a high-resolution grid of CMOS sensors and then, in post-

processing, convert the image into a series of CS measurements on the sampling device,

this approach would offer no advantage when compared to the traditional image source-
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coding techniques already employed in conventional imaging systems. Instead, correctly

implemented CS acquisition can simultaneously sample and “compress” an image 2. Since

each measurement taken is a linear projection of the entire image, a single scalar value, it

is possible to build an imaging sensor of arbitrary resolution which utilizes only a single

sensor rather than a dense grid of senors. To achieve this, the linear projection of the im-

age, or field of light intensities, against a given measurement vector drawn from �must be

calculated optically prior to sampling.

Devising systems to achieve this linear projection optically is a non-trivial undertaking.

However, one such device was famously constructed at Rice University, the single-pixel

camera (SPC) [35, 100, 113]. The SPC is a CS imaging device which utilizes a digital

micro mirror device (DMD) to achieve an spatial coding of the field of light intensities.

DMDs are a specialized set of devices first used for digital projection systems, consisting

of an array of very small mirrors which can pivot in one of two directions. In the SPC,

the DMD is used to direct light onto, or away from, a lens which focuses onto a single

photosensor. In this manner, the DMD can be used to effectuate a linear projection of the

image against the rows of � with binary entries. For each measurement taken, the DMD is

adjusted to match a different row of �. After all the measurements are taken, the imaged

scene may be recovered at a spatial resolution which matches the resolution of the DMD

used, one mirror corresponding to one pixel in the recovered image. A diagram of the SPC

imaging system in given in Fig. 2.1.
2Note here that when we say “compress,” we refer to the dimensionality-reducing characteristic of mea-

suring the linear projection of a signal. This is in contrast with what is usually meant by compression in the
source-coding community, which includes the quantization and entropy coding of the image.
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single
photosensor

DMD array

Figure 2.1

Diagram of the SPC CS imaging system (from [35, 100, 113]).
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While the SPC proved that CS imaging is indeed possible, it does not necessarily show

that such imaging is practical for imaging within the spectra of visible wavelengths. Visible

imaging systems have been continually refined for academic, industrial, and consumer set-

tings for decades. Even very high-resolution CMOS sensors are in no way cost prohibitive

for most applications. However, in applications which require exotic sensor materials or

sensors too large to achieve high-resolution imaging in a cost-effective manner, CS can

offer significant cost reductions in sensor design by requiring only a single, well engi-

neered sensor. Imaging systems operating within the infrared or other extra-visible spectra

stand to benefit the most from CS imaging [6]. The techniques developed and discussed

subsequently focus on imaging within the visible spectra, as this data is the most readily

available for testing. However, all of these approaches can be used on extra-visible spectra

with little to no modification.

2.3.2 Recovery

Proposed methods of image recovery from CS measurements attempt to address two

major points: reducing the required computation time for this class of high-dimensionality

signals, and improving quality of the recovered signal from a given number of measure-

ments. Both of these points can be addressed by making the best use of signal priors and

natural-image models.

The most direct approach to CS image recovery is simply to solve one of the CS re-

covery problems covered previously in Sec. 2.2 using a transform basis,  , which best

suits natural images in terms of compressible representation via energy compaction. For
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example, the discrete cosine transform (DCT) and discrete wavelet transform (DWT) are

two very well developed methods for compact image representation. Since images are 2D

signals, and the equations of Sec. 2.2 are only defined for the recovery of vectors, a raster-

iszation approach can be used to enforce agreement between transforms meant for images

and CS recovery meant for vectors. For ease and clarity, in the remainder of this work we

assume that any such rasterizations are implicitly defined within  .

Except for sparsity, the forms of recovery in Sec. 2.2 are largely agnostic to the inher-

ent structure of the signal. Consequently, such techniques treat the support of the signal

democratically. However, the information content of the transform coefficients for natu-

ral images is not uniformly distributed over the transform basis, instead, coefficients of

significant magnitude tend to cluster in the low-pass regions of the transform basis. This

low-pass, or piecewise-smooth, prior can be utilized to construct CS reconstruction meth-

ods specific to natural images which require far fewer measurements for equal recovery

performance when compared to their model-agnostic counterparts.

One of the earliest proposed approaches, Total Variation (TV) minimization [90, 18,

19], uses the piecewise-smooth characteristic of natural images to great effect. Instead

of finding the sparsest solution within a transform domain, such as the DCT or DWT,

TV minimization finds the “smoothest” solution within the space of possible solutions.

Anisotropic TV-minimization makes use of the `1 norm to enforce sparsity upon the gradi-

ent of the solution, creating a penalty function of the form

TV (x) =
X

i,j

|x
i+1,j � x

i,j

|+ |x
i,j+1 � x

i,j

| . (2.13)
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Using the penalty above, the CS recovery problem can be stated as

x̂ = argmin

x

||y � �x||2 + � TV (x). (2.14)

TV-minimization has been widely used in CS recovery, and still represents the state-of-the-

art in terms of CS image recovery [42, 76] for images sampled within the spatial domain.

However, to date, many of the methods used to solve (2.14), such as second-order cone pro-

gram formulations using interior-point [48] or log-barrier methods [13, 11], leave much to

be desired in terms of computation time. Indeed, the cost of reconstruction using such ap-

proaches has prevented the use of TV-minimization for CS reconstruction when the image

resolution is high (in excess of 512⇥ 512, for example). Other, more computationally effi-

cient, approaches to solving (2.14) have been proposed, such as iterative soft thresholding

[7] and alternating minimization [116].

In [63] an augmented Lagrangian formulation coupled with an alternating direction

algorithm (TV-AL3) was proposed for solving (2.14) for both its anisotropic and isotropic

forms. The TV-AL3 method retains the same reconstruction accuracy afforded by TV-

minimization for CS image recovery while decreasing the computation time by orders of

magnitude over other TV-minimization techniques.

Another method for gradient minimization includes the piecewise autoregression ap-

proach of model-based adaptive recovery for compressive sensing (MARX) [120]. As an

extension of TV minimization, this technique makes use of smoothness priors for certain

regions, while also allowing for the preservation of edge or texture content which matches

a given prior model.
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Other techniques seek to impose a tree-structured prior on the magnitude of wavelet

coefficients during image recovery. This prior comes from the parent-child relationship

of coefficients across different scales of DWT decomposition [96], coefficients at a given

scale are likely to have large magnitude if the coefficient covering the same spatial loca-

tion at a coarser scale has large magnitude. Tree-structured wavelet compressed sensing

(TSW-CS) [50, 51] is one such approach which utilizes a hierarchical Bayesian model to

enforce predicted wavelet coefficient relationships during image recovery. Another similar

technique uses Gaussian scale mixtures to similar effect [59].

While many different techniques for CS image recovery have been proposed, few ad-

dress the practical concerns associated with CS image acquisition and recovery, namely,

tractable recovery time for high-resolution images and feasible sensor implementations.

We address these points in the next section.

2.3.3 Block-based CS

The CS image recovery techniques covered in the previous section are oriented towards

a dense, global sampling of the entire image during acquisition. However, this approach,

while being desirable in theory, has a number of distinct disadvantages in practice.

First, the sensing device must store the set of projections � in order to orient its spatial

scattering element, such as an array of DMD mirrors. Each measurement requires a linear

projection with a vector of dimensionality equal to the desired resolution of the final image.

Since the number of measurements required also scales with the resolution of the desired

image, the total number of elements within � can become too large to reasonably store for
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strict sensor-hardware constraints. For example, for a desired image resolution of 512⇥512

pixels, and at a subrate of 0.2, � contains 5122 ⇤ (0.2⇤5122) ⇡ 1.37⇥10

10 elements which

must be quantized to a certain number of bits. In the best-case scenario, when each element

is a binary value requiring one bit to store, � would require ⇡ 1.68 gigabytes to store

explicitly. Second, the majority of CS reconstruction techniques have a computational

complexity which scales polynomially with the dimensionality of the problem, causing the

reconstruction of high-resolution images to become impractical for most cases.

Gan [45] suggests that, in the case of natural images, the computational complexity

of CS reconstruction and the memory burden for the sensing device can be assuaged by

breaking up the signal into distinct blocks during acquisition. Block-based CS (BCS)

removes the global sampling of x by a dense � and replaces it with a repeating block-

diagonal measurement matrix by which local sampling of x within distinct blocks of size

B ⇥ B is accomplished. When the same �
B

is used for every block, � takes on a block-

diagonal form,

� =

2

66666666664

�

B

0 · · · 0

0 �

B

· · · 0

... . . . ...

0 · · · 0 �

B

3

77777777775

, (2.15)

such that (2.1) can be effectuated in a block-by-block fashion; i.e.,

y
i

= �

B

x
i

, (2.16)
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where x
i

is block i of the image. The size of �
B

is M
B

⇥B2 such that the subrate of BCS

is S = M
B

/B2.

The blocked sampling of the image effectively breaks up a large `1-minimization prob-

lem into many sub-problems, which can be solved more quickly by virtue of their smaller

dimensionality, and in parallel. It has been shown in [115] that localizing measure in this

way does not significantly degrade the achievable performance of the reconstruction.

For recovery, [45] suggests a procedure that couples projected Landweber iterations

similar to IHT with smoothing in the form of Wiener filtering. This smoothed projected

Landweber (SPL) procedure thus combines a fast, iterative solution to (2.7) with the im-

position of a smoothness constraint designed to eliminate blocking artifacts. In [76], the

overall process of BCS sampling and SPL reconstruction was called BCS-SPL. BCS-SPL

was extended [45] by use of bivariate shrinkage for thresholding and directional transforms

such as a dual-tree discrete wavelet transform (DDWT) and a contourlet transform (CT).

These modifications provide significant recovery-quality improvement while maintaining

a reasonable reconstruction time. The results in [76] suggest that BCS-SPL augmented

with such directional transforms is competitive with the state of the art for CS recovery of

a single still image.

Additionally, a variation of BCS-SPL was implemented within the wavelet domain,

multiscale BCS-SPL (MS-BCS-SPL) [41], which assumes a wavelet-domain sensing de-

vice. The MS-BCS-SPL approach samples wavelet coefficients in independent blocks,

similar to spatial domain BCS-SPL. However, the block sizes in MS-BCS-SPL scale de-

pending on the scale of the wavelet coefficients being sampled. Additionally, the number
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of samples taken for each block in a given scale varies, concentrating samples to low-pass

bands in order to preserve the most significant information about the image.

Structured random matrices (SRMs) [46, 32] are another approach to reducing both

the memory and computational burden of CS for images. A SRM-based acquisition does

not require the explicit storage of a projection matrix, �. Instead, SRMs induce a random

sampling by randomly permuting the elements of a simple image transform such as the

block cosine or Hadamard transform, and then taking a random subsampling of the result-

ing transform. Also, SRM sampling speeds up recovery, as its forward and back projection

can be quickly calculated, requiring fewer costly matrix to matrix operations.

For the remainder of this work, we focus on the BCS paradigm, and specifically, the

BCS-SPL method of image recovery. While the SRM approach offers similar advantages

in terms of memory and computational requirements, we will see in the next section how

spatial block sampling specifically can be leveraged to facilitate CS video sampling and re-

covery. For more discussion and results on the performance of different CS image recovery

techniques, we refer the reader to [42].
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CHAPTER 3

COMPRESSED SENSING OF VIDEO

CS promises to be a viable paradigm for signal acquisition for many different forms

of signals, such as one-dimensional waveforms in seismology, two-dimensional natural

imaging, three-dimensional magnetic resonance imaging (MRI) and tomography, as well

as many-dimensional hyperspectral data sets such as those from multi and hyperspectral

imagers. These applications have fit well in the CS framework because of the many data-

compression techniques unique to each which allow for their compact descriptions and

representations needed for CS recovery. All of these applications also possess signal struc-

tures which allow for practical CS hardware implementations for the acquisition of CS

measurements.

Video, too, can potentially be another viable area for the application of CS. However,

the very large dimensionality of video signals as well as their time-varying nature pose

barriers to practical CS acquisition and recovery that must be addressed. In the following

sections, we will review these limitations as well as propose a variety of methods for the

recovery of CS-acquired video.
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3.1 CS Video Acquisition

CS acquisition of video would ideally be global in the sense that CS measurements

would span the entire spatial and temporal extent of a video sequence; however, such global

CS acquisition of video is largely considered impractical to implement in a real device [34].

As a consequence, we focus on the case in which each video frame is acquired indepen-

dently with still-image-based CS measurement, for instance, with successive applications

of a single-pixel camera as was done in [114]. While other approaches to acquisition might

eventually be possible, we consider the single-pixel camera to be a straightforward and re-

alizable framework for capturing images and video via linear projection.

More specifically, CS theory dictates that it is possible to recover a signal of dimension

N from a set of measurements of dimension M where M ⌧ N . In the canonical CS

acquisition or measurement process,

y = �x, (3.1)

we see that these measurements are calculated as a projection of the entire N -dimensional

signal by an M⇥N random projection matrix, �. Complications in designing CS hardware

arise due to the global nature of this dimensionality-reduction step. That is, a CS device

must be able to simultaneously view the entirety of a signal (for video, this means in

space as well as in time) and calculate its projection by � non-computationally in the

ambient signal domain. Because of this requirement, simultaneous spatial and temporal

measurement of video appears impractical [34], and thus one opts for frame-by-frame

measurement.
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3.1.1 Hardware Limitations

In the case of natural-image signals, we have already employed the single-pixel cam-

era [100, 113, 114, 35] for static-scene measurement. However, the single-pixel camera

entails multiple measurements conducted sequentially in time such that the total time to

acquire a given signal is increased by a factor of M . Thus, for dynamic scenes, there is

a potential for disagreement between successive measurements, as each measurement of

the scene is at a different point in time. If object motion between measurements is sig-

nificant, there could be blurring or other reconstruction errors when recovering the signal

from the measurements. For this reason, a viable CS sensing device for dynamic scenes

(i.e., video) which uses single-pixel acquisition must have a very short exposure time and

delay between measurements.

More specifically, for the CS measurement of video at a target frame rate, R
f

, using

M measurements for each frame, each measurement must be captured within 1/(R
f

M)

seconds. For high-resolution video, M can be somewhat large (though, of course, still

much less than the number of pixels, N ), and this puts a tight restriction on the sensing

device when the measurements are captured sequentially. However, the latest micro-mirror

arrays have attained very fast switching speeds, and these speeds are increasing each year

as research into microelectromechanical systems (MEMS) continues. For example, [81]

reports a MEMS device capable of switching mirror states in 222 ns; such a DMD would

permit CS measurement of video with 720 ⇥ 480 frames at a subrate of S = 0.3 with a

frame rate of

R
f

=

1

720 · 480 · 0.3 · 225⇥ 10

�9
⇡ 42 frames/sec. (3.2)
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While devices with such switching speeds are not yet in commercial production, even

devices with much lower switching rates (e.g., on the order of 0.1–1 MHz) can accomplish

video acquisition by trading-off spatial resolution, frame rate, or reconstruction quality.

For example, at a switching rate of 0.5 MHz and a subrate S = 0.2, a video sequence could

be captured at standard CIF resolution (352⇥ 288) at R
f

⇡ 24 frames/sec.

If the measurement matrix � has real-valued, rather than binary, entries (as is the case

with a dense Gaussian measurement operator), it is possible to use pulse-width modulation

or dithering to simulate fractional transmittance from the mirror to the sensor. However,

such approaches are problematic. Firstly, the fractional values are subject to quantization

error induced by the accuracy of the pulse-width modulation. Secondly, for a fixed mea-

surement subrate, the mirror-switching speed must be increased by a factor dependent on

the quantization precision used.

To reduce some of the necessary tradeoffs caused by sequential measurement, multiple

sensors operating in parallel may be used to increase the effective measurement subrate. A

multiple-pixel device would operate in much the same manner as the single-pixel camera

and would still maintain a low sensor density as compared to a full-resolution sensor.

3.1.2 Physical Limitations

The exposure time necessary to accurately measure the amount of radiation incident on

the photosensor is another—and perhaps more significant—component to the time required

for each measurement. Exposure time presents a challenge: if the exposure time is too

short, then noise from dark current within the system or Poisson noise induced by the pho-
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ton arrival rate can overwhelm the actual measurements, requiring more sophisticated—

and costly—photosensors. However, the increased cost of such photosensors is offset by

the fact that there would be need for only one photosensor rather than an entire array.

Also, using the single-pixel framework, photons from all the mirrors that face the sensor

are concentrated onto a single sensor during measurement. For example, consider BCS us-

ing blocks of size 64⇥ 64. If we assume that, on average, half the mirrors point toward the

sensor for any given measurement, the sensor is exposed to 64

2/2 ⇡ 2000 times more light

than a single sensing element would be in a traditional dense-array sensor. This focusing

of energy increases the signal-to-noise performance of the single sensor as compared to the

limited spatial binning capabilities of sensors in a dense-grid configuration.

These considerations make high spatial- and time-resolution video difficult but ar-

guably not impossible. In a general sense, the design of CS acquisition devices would

necessitate some tradeoff between the number of measurements acquired for each frame,

the desired frame rate (temporal resolution), and the exposure time for each measurement.

For example, applications such as distributed video networks, or other ad hoc distributed

sensor networks, could make use of cheaper CS video-sensor systems in surveillance ca-

pacities wherein spatial resolution is not the top priority. With smaller-resolution frames,

the number of measurements for each frame decreases for a given target subrate, thereby

allowing greater exposure time for each measurement within a frame-rate constraint.

Many of these design constraints might be justified in settings wherein every measure-

ment is costly or the sensors themselves are costly. Sensing signals in exotic spectra—such

as in thermal, terahertz, and medical imaging—represent areas wherein CS can potentially
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reduce either device or acquisition cost. Except for perhaps niche applications, imaging

within the visible domain using CS is not likely to be competitive with existing low-cost

CCD or CMOS imagers. However, in the remainder of our discussion, we use visible-

domain imagery in our experiments to explore potential recovery techniques for signals.

Thermal, infrared, and medical images exhibit characteristics similar to natural, visible

domain, images—most importantly, piecewise smoothness. Because of these similarities,

we anticipate that the methods we demonstrate could also be applied to non-visible spectra

with similar effect.

3.1.3 Block-based Acquisition of Video

So far, this discussion has considered only the case of a globalized, and therefore dense,

structure of �. From prior discussion, we know there are some inherent drawbacks to such

a dense measurement process, such as reconstruction time and the memory requirements

of storing �. However, the hardware of the single-pixel camera can accommodate a CS

measurement procedure, and the practical considerations discussed here still apply in the

BCS context. BCS also has the added advantage of decreasing the bandwidth required to

transmit measurement vectors between system memory and the DMD array since a small

measurement vector can be transmitted once and subsequently translated across the DMD

array for each block.

For static images, BCS measurement is straightforward, requiring only a block-diagonal

� be employed. In the case of BCS of video, however, since each block is measured inde-

pendently, each block represents a different point in the time of the scene, rather than each
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frame. On the one hand, because fewer measurements are required for a single block than

for an entire image, the time duration between the first measurement and the last measure-

ment in a given block is a multiplicative factor less than if we take global measurements of

the entire frame. This decreases the possibility for blurring within a given block in a frame.

On the other hand, since each block represents a different point in time, there could be some

content drift between the blocks of a given frame if the dynamic content being represented

is changing sufficiently fast. If it is more desirable to have blurring rather than drift, then

the CS device could scan through the blocks repeatedly, taking a single measurement at

a time. This would simulate the measurement timing of a global CS measurement of the

frame and could be accomplished by simply reordering the rows of the block-diagonal �.

3.2 CS Video Recovery

In this section, we detail a variety of recovery procedures that could be employed to

recover a frame-by-frame CS-acquired video sequence. In order to have a successful re-

covery technique, it is imperative that a method be found to adequately represent the video

sequence in a compressible fashion through some form of multidimensional decorrelation

and energy compaction.

3.2.1 Frame by Frame

The first approach we investigate for the recovery of CS acquired video is the naı̈ve one.

The frame-by-frame recovery procedure serves as our baseline CS video reconstruction

technique. It does not incorporate any information about the time-varying nature of the

video signal into the compressible representation of the video signal. Instead, each frame
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is treated as an independent image and recovered using only a spatial, two-dimensional,

sparse-representation basis. Assuming that the recovery is given by a set of measurements,

y
t

, and the projection used, �
t

, for each frame in the sequence, the recovery is simply

x̂
t

= CSRecover (yt,�t

) . (3.3)

Here, CSRecover is any CS image-recovery technique, such as GPSR or BCS-SPL,

which employs the basis  as the sparse representation basis for the frame recovery.  

could be any two-dimensional transform, including the DCT, DWT, DDWT, CT, or RDWT.

Because this method does not take into account any temporal redundancy or motion

model, we could say that, in the traditional sense, each frame is reconstructed in an Intra-

mode. The distortion performance of the recovery of each frame, ||x̂
t

�x
t

||2 , is dependent

upon only its own information content and the number of measurements taken. As the

number of measurements decreases for a given level of information content in the signal,

the recovery performance will decrease. In the case of CS-acquired video, because there

are many frames which must be sampled, the number of measurements allocated to each

individual frame must be fairly small. The lack of an adequate number of measurements

can cause severe distortions at each frame, lowering the overall quality of the video recov-

ery significantly.

We anticipate that any method which takes into account the highly correlated nature

of frames within any natural video sequence in a meaningful way will see a significant

performance improvement when compared to frame-by-frame recovery. The problem from
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here is to find the best way to incorporate this prior knowledge of the structure of video

sequences into the recovery procedure.

3.2.2 Volumetric Recovery

One of the most direct ways to employ decorrelation along all three axes (two spatial

and one temporal) of a video sequence is through a three-dimensional transform such as the

three-dimensional DWT (3D-DWT). The 3D-DWT is simply a multidimensional extension

of the DWT, much like the 2D-DWT, where the wavelet filters are applied along each

dimension of the signal.

With this technique, a group of frames, or the entire video sequence, is reconstructed si-

multaneously by a CS recovery algorithm while employing the 3D-DWT as the sparse rep-

resentation basis, . This methodology can be easily incorporated into iterative CS solvers

such as the IHT/IST or even BCS-SPL. The thresholding step used in these solvers can be

accomplished in the three-dimensional case in much the same way as the two-dimensional

case, since the parent-child wavelet-coefficient-magnitude correlation observations used

in techniques such as bivariate shrinkage [25] still apply in the multidimensional-wavelet

case.

However, the volumetric approach to video recovery does not provide adequate dis-

tortion performance in many circumstances, especially in video sequences with a large

amount of complex motion, fast transitions, strobing patterns, or panning and zooming.

We can explain this intuitively by remembering that each frame in a video sequence repre-

sents a sample taken at a discrete point in time, separated from its temporally neighboring
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frames by gap of time in which no measurements are taken. In the physical scene being

captured, all motion and change is continuous in nature; however, video sequences ac-

quired at moderate frame rates (30-40 frames per second) do a poor job of capturing this

continuity and only represent a discretized version of the motion and change playing out

in the scene. This discretization in time can cause sharp transitions in a pixel-luminosity

level across time. These discontinuities require large-magnitude wavelet coefficients in

high-pass bands, degrading the overall performance of the temporal decorrelation and com-

pressible representation.

As an example, the first 32 frames of the common video test sequence Foreman were

sampled using subrates S = {0.1, 0.2, 0.3, 0.4, 0.5} using BCS, as in Eq. 2.16, and each

frame was sampled according to Sec. 3.1. The sequence was recovered using three levels

of 3D-DWT decomposition for each of the different subrates used. The performance of

this recovery was then compared against the baseline, frame-by-frame, recovery procedure

discussed in Section 3.2.1.

In Figure 3.1, the performance of CS recovery appears to perform worse when using the

3D-DWT than if we had just recovered each frame as an independent image. As discussed

in this section, we first assume that the 3D-DWT should provide added decorrelation along

the temporal axis and therefore aid the CS recovery. This would be true in the case of

continuous, or very slow, motion or change in our scene. The foreground of the Foreman

sequence is very dynamic in nature, and the 3D-DWT does more harm than good, here.

The temporal discontinuities between frames prohibit the use of direct volumetric recov-

eries except perhaps when the video signal is sampled with S > 0.5, allowing for more
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Figure 3.1

Frame-by-frame and 3D-DWT recovery quality of the first 32 frames of the Foreman
sequence.

(a) S = 0.1, (b) S = 0.2, (c) S = 0.3, (d) S = 0.4, (e) S = 0.5. (f) Recovery quality averaged
over entire sequence for S = [0.1,0.5].
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accurate recovery even in the presence of low compressibility. A high subrate in this range

is undesirable, however, and so we must try to find some other method if we wish to recover

video sequences with better distortion performance than the frame-by-frame approach.

3.2.3 Residual Recovery

Residual reconstruction seeks a sparser representation of a given signal by recovering

the difference between the signal and some prediction. The philosophy is very similar

to that of DPCM in traditional signal coding—if a prediction is similar to the signal it is

intended to approximate, then the value of the residual over most of the support should be

insignificant in magnitude. In traditional video coding, this technique is used extensively

to create highly compressible residual frames which are then compressed with a still-image

coder.

Residual reconstruction can be easily integrated into the CS paradigm because it re-

quires no change on the part of the signal acquisition and has a simple implementation on

the reconstruction side. Suppose that we sample a given signal x using a measurement

basis � such that measurements y are calculated via (2.1). If we are given some kind of

prediction of x in the ambient domain of x—namely, x̃, for which we hope x̃ ⇡ x—then

we can find the residual r between the two signals as r = x � x̃. Because y is acquired

simply by taking the inner products of x with the rows of �, the projection of r into the

measurement basis is

q = �r = � (x� x̃) = y � �x̃. (3.4)
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Because of the linear nature of the signal-sampling process, a simple subtraction of a pro-

jection of x̃ provides us with a projected residual signal at the reconstruction side without

changing our signal-acquisition procedure. This residual should be more amenable to CS

recovery because it is expected to be much more compressible than x itself. We may then

calculate the final reconstruction of y,

x̂ = x̃+ CSRecover (q,�). (3.5)

The quality of x̂ is directly tied to the ability of the reconstruction to recover r from q; i.e.,

kx� x̂k2 = kx� (x̃+ r + e
r

)k2

= k(x� x̃)� r � e
r

k2

= ke
r

k2 , (3.6)

where e
r

is the error resulting from a non-exact recovery of r.

As in the previous section, an experiment was conducted to compare the performance

of the residual reconstruction method to the frame-by-frame approach. The recoveries were

calculated using the same measurements as the previous experiment, as well. For residual

reconstruction, a prediction for each frame of the sequence is required. These predictions,

P
t

, were formulated using bidirectional MEMC with integer pixel accuracy,

P
t

= 0.5 ⇤ (MC(X
t

, X
t�1,MV f

t

) + MC(X
t

, X
t+1,MV b

t

)). (3.7)

The sets of motion vectors, MV f and MV b, given to the CS recovery procedure are

the true motion vectors calculated from the original video sequence. We use these motion

vectors for comparison purposes.
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Figure 3.2

Frame-by-frame and residual recovery quality of the first 32 frames of the Foreman
sequence.

(a) S = 0.1, (b) S = 0.2, (c) S = 0.3, (d) S = 0.4, (e) S = 0.5. (f) Recovery quality averaged
over entire sequence for S = [0.1,0.5].
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Figure 3.2 shows a marked increase in distortion performance when residual recovery

is used instead of the frame-by-frame approach. The performance of the residual recon-

struction with such a simple prediction step leads us to believe that this method shows the

most promise if adequate predictions can be calculated at the time of recovery without the

use of outside information other than the given measurements. In the following chapter,

we will investigate different prediction strategies in order to find one that provides the best

performance when used in conjunction with residual reconstruction.

3.2.4 Other Approaches to Recovery

A number of approaches to the CS reconstruction of video were developed for the par-

ticular case of dynamic magnetic resonance imagery (MRI). This type of image sequence

tends to have less motion, and the motion tends to be less of a strictly translational nature,

than does video acquired from natural photographic scenes. Initial work adopted the volu-

metric reconstruction employed originally in [114, 113]—for example, [44] reconstructs a

dynamic MRI volume using a temporal Fourier transform coupled optionally with a spatial

wavelet transform as a 3D sparsity basis.

Given the computational issues with reconstructing volumes, most CS reconstructions

for video have focused on frame-based recovery that exploits the fact that successive frames

are strongly correlated. For example, [72] reconstructs multiple frames simultaneously

while capitalizing on the fact that frame-to-frame differences are expected to be highly

compressible; thus the `1 norm of the frame difference is incorporated into the CS recon-

struction.
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Various other strategies have been adopted to handle frame-to-frame correlation. For

example, Vaswani et al. [111, 112, 68, 88, 110] have proposed a variety of related ap-

proaches for the CS reconstruction of dynamic MRI data. Fundamental to several of these

techniques [111, 68, 88] is the general strategy of residual reconstruction from a prediction

of the current frame as in (3.5); the key difference from the work proposed here is that,

rather than using a MEMC-based prediction, Vaswani et al. employ a least-squares [111]

or Kalman-filtered [88] prediction. These predictions are driven by an explicit sparsity pat-

tern for the current frame; the techniques attempt to track this sparsity pattern as it evolves

from frame to frame. It is assumed that the sparsity pattern evolves slowly over time, an

assumption that may not hold in general video with arbitrary object motion. However, the

“Modified-CS-Residual” algorithm of [68] is a prominent benchmark in the literature for

gauging CS-reconstruction performance for not only dynamic MRI but also video as well.

Alternatively, [94] proposes another strategy that also attempts to explicitly track tem-

poral changes in video. In this case, [94] deploys a linear dynamical system (LDS) that

models the evolution of a video scene in terms of low-dimensional dynamic parameters

and high-dimensional static parameters such that the compressive measurement process is

applied to only the dynamic portion of the signal. It is observed in [94], however, that this

LDS-based strategy works well for relatively low-motion content of a largely textural na-

ture, such as flames, water, and traffic, whereas the more complex and translational motion

often associated with more arbitrary video content is not properly handled by the model.

This observation echoes the primary drawback that applies in general to the techniques

for CS reconstruction of video that do not employ MEMC. Methods such as those con-
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sidered above are typically best suited to video content that varies only quite slowly over

time, such as dynamic MRI. For more complex temporal variation, particularly the non-

stationary translational object motions that often occur in video of natural scenes, the use

of explicit MEMC is warranted. In the literature, there have been a only handful of ap-

proaches that incorporate MEMC for CS reconstruction of video. We have discussed [78]

and [30] previously; others in this vein include the following.

In [99], an extension of the dynamic-MRI reconstruction of [112] was proposed. In

essence, rather than simply estimate updates to the time-varying sparsity pattern directly

from the preceding frame, the preceding frame is first motion-compensated, allowing for

more arbitrary object motions to be handled. The technique of [99] inherits, however,

the drawback identified previously for [112] in that the temporal evolution of the sparsity

pattern is assumed to be slow.

The method of [58] exploits temporal correlation by constructing a motion-compensated

interpolation between consecutive key frames. This motion-compensated interpolation is

then used as the initialization point of a still-image CS reconstruction. The key frames

are reconstructed using an independent still-image CS reconstruction with a subrate higher

than that used for the non-key frames.

Another reconstruction algorithm driven by MEMC between high-quality key frames

was considered in [56, 57]. This algorithm, called k-t FOCUSS in [56], assumes that there

exist one or two key frames obtained through some separate means, and then CS recon-

struction is driven by residuals between each intervening non-key frame and a block-based

bidirectional motion-compensated prediction from each of the key frames (or a single uni-
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directional motion-compensated prediction in the event that only one key frame is avail-

able). As in MC-BCS-SPL, full-search block matching is used for the MEMC process. We

note that k-t FOCUSS was designed specifically for dynamic MRI; consequently, [56, 57]

uses relatively long distances between key frames (e.g., 25 frames for a cardiac cine se-

quence in [57]) with perfect key frames (i.e., subrate = 1.0) at each end.

A final strategy to incorporating explicit MEMC into CS reconstruction for video is rep-

resented by the technique proposed in [85]. In contrast to the MEMC-based reconstructions

like MC-BCS-SPL as well as those of [56, 57, 30] which are inspired by the traditional

hybrid video-coding architecture, the technique of [85] adopts the motion-compensated

temporal filtering (MCTF) of [95]. In essence, MCTF is combined with a spatial DWT to

implement a motion-compensated 3D transform. 3D reconstruction simultaneously across

all frames similar to [113] is then conducted. A key aspect of the proposed approach is that

the 3D reconstruction is applied in each resolution level of the spatial DWT separately, us-

ing the reconstruction of the previous spatial resolution for determining the motion vectors

between all the frames to drive the MCTF within the current resolution level. As a con-

sequence, the technique of [85] has the advantage of explicit MEMC like those methods

surveyed above. However, it also inherits the computational drawback of the cross-frame

volumetric reconstruction identified in Sec. 3.2.2 as a significant impediment for 3D tech-

niques such as [114, 113]; specifically, computational issues are compounded in [85] since

a separate volumetric reconstruction, as well as MEMC process, is conducted for each

spatial resolution level.
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CHAPTER 4

FRAME PREDICTION FOR RESIDUAL RECOVERY

The key to the successful use of residual reconstruction is to generate a compressible

residual frame, r, through the use of a very accurate prediction, x̃, of the target frame, x.

Thus, the goal is to carry out the optimization,

x̃ = arg min

✓2P(xref )
kx� ✓k2 , (4.1)

where P(x
ref

) is the set of all possible predictions which can be generated from the ref-

erence frame, x
ref

, using some defined strategy. However, the creation of the prediction x̃

occurs during CS reconstruction; as a consequence, x is unknown, and (4.1) cannot be im-

plemented as written. There are two strategies to approximate (4.1) using only information

known to the CS reconstruction. The first would be to approximate x with an initial CS

recovery from y and use the resulting approximation to x to drive the prediction process;

i.e.,

x̃ = arg min

✓2P(xref )

���CSRecover (y,�)� ✓
���
2
, (4.2)

The resulting x̃ is then used in (3.5) to form the final reconstruction x̂ using a CS recon-

struction from the measurement-domain residual, q = y � �x̃.
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We propose a different approach, shifting (4.2) from the ambient-signal domain into

the measurement domain of �,

x̃ = arg min

✓2P(xref )
k�x� �✓k2 ,

= arg min

✓2P(xref )
ky � �✓k2 . (4.3)

Although (4.3) recasts the search for the prediction into the measurement domain, the

Johnson-Lindenstrauss (JL) lemma [55, 26, 1] suggests that the solution of (4.3) will likely

match or lie near to that of (4.1), especially in the case that P(·) is chosen to be based upon

single block-matching MEMC. In brief, the JL lemma holds that L points in RN can be

projected into a K-dimensional subspace and approximately maintain the original pairwise

distance relationships between the points so long as K � O(logL). As a consequence, the

x̃ closest to x in (4.1) should map to the �x̃ that is closest to y in (4.3), provided that the

number of candidates searched in the minimizations is not too large.

Our experimental observations reveal that the measurement-domain prediction of (4.3)

provides better predictions in general than the ambient-domain strategy represented by

(4.2) (see Fig. 4.1). This is due to the fact that (4.2) uses only a noisy approximation to x,

whereas the JL lemma suggests that (4.3) should nearly duplicate the targeted procedure

of (4.1). As a consequence, we focus on measurement-domain predictions in the form of

(4.3) in the remainder of our development. We originally presented this material in [104]

which we further extended in [42, 21].
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Figure 4.1

Recovery quality over subrate for the second frame of the Foreman sequence when using
the first as a reference measured at S1 = 0.5.
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4.1 Single Hypothesis (SH) Frame Prediction

In traditional video coding, frame predictions are calculated from temporally neigh-

boring frames which are likely to have similar content to the target frame using MEMC.

Specifically, the frame at time t to be predicted, x
t

, is split into blocks of size B ⇥ B. The

chosen reference frame or frames are then searched within a spatial region surrounding

the location of the target block within x
t

. The best-matching block, chosen according to

some distortion measurement, in the reference frames then forms the prediction of the tar-

get block. This is known as SH prediction in the video-coding community since a single,

best-matching hypothesis prediction (a block in one of the reference frames, in this case)

is chosen to represent the target block.

In the CS reconstruction of video wherein each frame has been sampled using BCS

applied frame by frame, the ensemble of measurements for frame x
t

is

y
t,i

= �x
t,i

, (4.4)

where i is a block index. In order to create a prediction of a given block, x
t,i

, we recast

(4.3) as

x̃
t,i

= arg min

✓2Ht,i

ky
t,i

� �✓k2 , (4.5)

where H
t,i

is the set of blocks culled from the reference frame or frames within the search

space given for block x
t,i

(typically a rectangular region about the spatial location of x
t,i

in the frame).
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4.2 Multi Hypothesis (MH) Frame Prediction

Video coding has long exploited MH methods to improve video-coding quality [98];

common forms include subpixel-accurate MC [47], overlapped-block MC [82, 84], bidi-

rectional MC (B-frames), and long-term-memory MC [118]. These techniques can be

viewed as tradeoffs specific to a rate-limited environment; that is, these techniques impose

specific structures on the hypotheses that form the ultimate prediction in order to limit

the amount of additional motion-vector rate overhead entailed by multiple predictions of a

single block. However, in the context of CS reconstruction, the MH predictions are all cal-

culated at the reconstruction side of the system, there is no associated rate burden, and we

are able to consider more intensive forms of MH prediction, essentially combining all the

best hypotheses available from the reference frames without the imposition of rate-limiting

structure.

For MH CS recovery, we alter the MEMC prediction strategy of (4.1) such that each

block prediction, x̃
t,i

, is calculated as a linear combination of all available hypotheses in

H
t,i

while maintaing a high degree of accuracy; that is,

w
t,i

= argmin

w

kx
t,i

�H
t,i

wk2 , (4.6)

x̃
t,i

= H
t,i

w
t,i

. (4.7)

We note that the above equations are defined at each block where i serves as the block

index. Also, H
t,i

2 RB

2⇥K consists of rasterized versions of the hypotheses as its K

columns and K = |H
t,i

|.
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Of course, in the case of CS reconstruction, (4.7), like (4.1) before it, cannot be

implemented—we cannot calculate w
t,i

directly because we do not have access to x
t,i

;

we have only its measurements, y
t,i

. We thus adopt the measurement-domain approach of

(4.5), modifying it to the MH case. However, this makes the optimization a much more

difficult, ill-posed problem, because we have to calculate the optimal linear combination

within the projected space of �; i.e., combining (4.5) and (4.6) yields

ŵ
t,i

= argmin

w

ky
t,i

� �H
t,i

wk2 . (4.8)

In general, w
t,i

6= ŵ
t,i

unless � is square, which is necessarily not the case for CS. The ill-

posed nature of this problem requires some form of regularization of the LSQ optimization.

It would seem natural here to adopt the approach used in traditional CS which would be

to impose a sparse prior on w
t,i

in order make this inverse problem well-posed. However,

this is a problematic approach on two counts. First, the fitness of a sparse prior in this

context is not necessarily known. The dictionary of hypotheses we use, H
t,i

, has no special

construction for which we should assume that w
t,i

should be sparse. So, while sparsity

could enforce a well posed problem, and give us an agreement between w
t,i

and ŵ
t,i

, x̃
t,i

might not be an accurate approximation of x
t,i

for sparse w
t,i

. Second, since the hypothe-

ses used to construct H
t,i

are spatially collocated, many of the atoms of H
t,i

are highly

correlated. This correlation can cause the matrix A = �H
t,i

to have less than desirable

properties for CS recovery, increasing the number of measurements needed to accurately

recover a sparse approximation. Instead, we look for a different approach to regularization

which avoids these impediments.
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In a normal LSQ problem, the goal is to find a solution which most closely matches a

set of observations, namely, the solution which minimizes

J (✓) = ||✓ � Ay||2. (4.9)

The Moore-Penrose pseudoinverse of A gives the solution which minimizes J (✓), namely,

argmin

✓

J (✓) = A†y =

�
ATA

��1
ATy. (4.10)

Another approach to finding the LSQ solution is via singular value decomposition (SVD).

First, decompose the matrix A,

A = U⌃V T , (4.11)

where ⌃ is a diagonal matrix of the singular values, �
i

of A. From this, A† can be alter-

nately calculated as

A†
= V DUT (4.12)

where D is a diagonal matrix with entries 1/�i.

In our setting, the matrix A is often has many more rows than columns. The under-

determination of the system y = Ax causes the matrix ATA to become ill-conditioned

(near singular) which prohibits the accurate calculation of the matrix inverse
�
ATA

��1.

The large condition number of the matrix ATA resulting from this near singularity also

removes any hope for backwards stability, causing small perturbations on y to yield drastic

changes to the solution.
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One of the most common approaches to address these problems has been Tikhonov

regularization (also known as ridge regression) [103, 53] which introduces an `2 penalty to

J (✓). The solution of the regularized problem is given as the solution which minimizes

J
T

(✓) = ||✓ � Ay||22 + �||�✓||22. (4.13)

The addition of the regularization term �||�✓||2 to the LSQ cost penalizes solutions which

have large `2 norms. Tikhonov regularization is known as a shrinkage method because of

this property.

Tikhonov regularization trades off between accuracy and variance by balancing the

minimization of J
T

(✓) between the LSQ residual, ||✓ � Ay||2, and the regularizer, ||�✓||2.

The regularization parameter, also known as the ridge parameter, �, balances the effect of

the regularizer against the residual. The solution of the Tikhonov regularization can be

calculated as

argmin

✓

J
T

(✓) =
�
ATA+ �2�T

�

��1
ATy. (4.14)

In the simple case � = I , the singular values of the resulting matrix, ATA + �2I , are

shrunk according to

�̃
i

=

�
i

�2
i

+ �2
. (4.15)

Since the condition number of a matrix is calculated as the ratio between its largest and

smallest singular values,

 =

�
MAX

�
MIN

, (4.16)

the addition of the matrix �2I causes the condition number, , to decrease,


T

= 

✓
�2
MIN

+ �2

�2
MAX

+ �2

◆
. (4.17)

46



Thus, if constructed properly, the Tikhonov regularization may allow for stable recovery

by lowering the condition number of the matrix being inverted in (4.14).

4.2.1 Tikhonov Based MH Regularization

To calculate the MH weightings for a given block within a video frame, we construct

the following Tikhonov regularization,

ŵ
t,i

= argmin

w

ky
t,i

� �H
t,i

wk2 + � k�wk2 , (4.18)

where � is known as the Tikhonov matrix. The � term allows the use of prior knowledge

to bias the solution; in some contexts, it may make sense to use a high-pass or difference

operator for � to obtain a smooth result, or, in others, to set � = I to impose an energy

constraint on the solution.

In our method, we propose that hypotheses which are most similar to the target block

should be allowed a much more significant contribution to the linear combination than

those which are not. To accomplish this we construct � as a diagonal matrix,

� =

2

6666664

ky
t,i

� �h1k2 0

. . .

0 ky
t,i

� �h
K

k2

3

7777775
, (4.19)

where h1, h2, . . . , h
K

are the columns of H
t,i

. With this structure, � penalizes weights of

large magnitude assigned to hypotheses which have a significant distance from y
t,i

when

projected into the measurement domain. With the structure of � chosen, (4.18) may be

solved directly by calculating

ŵ
t,i

=

⇣
(�H

t,i

)

T

(�H
t,i

) + �2�T

�

⌘�1

(�H
t,i

)

T y
t,i

. (4.20)
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In this formulation, � is a scale factor that controls the relative effect of the Tikhonov-

regularization term in the optimization of (4.18). The choice of � can have a large effect

on the performance of the regularization, so it is important to find a value which imposes

an adequate level of regularization without causing ky
t,i

� �H
t,i

wk2 to become too large.

We found in practice that, over a large set of different frames, a value of � 2 [0.1, 0.3]

provided the best results; consequently, we use � = 0.25 from this point on.

4.2.2 `1-Based MH Regularization

An alternate to the Tikhonov regularization used in (4.18)–(4.19) was suggested in [30].

Specifically, it was assumed in [30] that the MH weights w
t,i

in (4.6) are sparse; i.e., only

a relative few of the possible hypotheses in H
t,i

should contribute the prediction in (4.7).

As a consequence of this assumption, [30] imposes an `1-penalty term on ŵ
t,i

in the form

of

ŵ
t,i

= argmin

w

k�H
t,i

w � y
t,i

k2 + kwk1 . (4.21)

The intuition here is that only a few blocks within the search space should contribute sig-

nificantly to the linear combination; this is reflective of the structure often imposed on MH

prediction in traditional video coding, structure that is necessary to limit motion-vector rate

overhead. However, in the context of CS reconstruction, a regularization enforcing spar-

sity is needlessly restrictive on the structure of ŵ
t,i

, which can potentially result in lower

prediction quality. Furthermore, Tikhonov regularization in the form of (4.18)–(4.19) is a

much more amenable solution than `1 regularization in terms of scalability and computa-

tion time, as well. That is, with the `1 penalty, the optimization in (4.21) is approached as a
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traditional CS problem using some generic CS solver ([30] uses SAMP [31], for example).

Such CS solvers are based on some kind of iterative search to arrive at a final solution

and are thus strictly linear in the computation. Yet, the weights ŵ
t,i

must be calculated for

every block in x
t

, so the computation time can be very significant when using these lin-

ear solvers. On the other hand, the Tikhonov regularization we propose can be calculated

directly at each block with simple matrix math in the form of (4.20).

A major focus of experimental results which follow is an investigation into the relative

performance of the Tikhonov-regularization approach to MH prediction that we propose in

Sec. 4.2.1 as opposed to that of the `1-based approach of [30]. We explore these experi-

mental results next.

4.3 Full-Sequence Video Recovery

In the previous discussion, we examined how one might recover a single frame using

MH predictions from reference frames. However, we have not yet addressed how to em-

ploy these techniques into a full-sequence video-reconstruction strategy. We do so now, in-

troducing a video reconstruction we call MH-BCS-SPL that couples BCS-SPL still-image

reconstruction [76] of MEMC residuals with MH prediction in the measurement domain

as described in Sec. 4.2.

Because MH prediction requires that hypotheses be drawn from recovered reference

frames, it is important that reference frames have as little distortion as possible. Conse-

quently, “key frames,” which are sampled at a relatively high subrate and therefore have

relatively high quality, anchor the CS reconstruction of video; such key frames, which are
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commonly used in CS reconstruction of video (e.g., [78, 56, 57, 30]) take obvious inspi-

ration from the so-called I-frames in traditional video-compression systems. In CS recon-

struction of video, these key frames are interspersed at regular intervals during acquisition,

and, in order to ensure that the key frames are suitable references for frame prediction, they

are acquired using a subrate typically much higher than that of the non-key frames.

The proposed MH-BCS-SPL reconstruction procedure is depicted in Fig. 4.2. MH-

BCS-SPL first recovers each key frame independently using intraframe BCS-SPL. These

recovered key frames are then used as references to create MH predictions of the non-key

frames temporally adjacent to them; specifically, each non-key frame is predicted bidirec-

tionally from the two nearest key frames using the Tikhonov regularized MH method of

(4.18)–(4.19) where H
t,i

is formed as the union of the search windows in each reference

frame. Then, the key frames themselves are reconstructed again using the same bidirec-

tional MH prediction procedure—this time, the two adjacent recovered non-key frames

serve as reference frames. Finally, these “enhanced” key frames are then used as refer-

ences to bidirectionally predict each non-key frame in the video sequence.

4.4 Experimental Results

4.4.1 Single Frame Recovery

We now consider the recovery of a test frame, x2, using the immediately preceding

frame, x1, as a reference and evaluate the various measurement-domain prediction ap-

proaches discussed in this chapter. The PSNR performance of the test-frame recovery as

the subrate, S2, for the test frame varies is presented in Figs. 4.3–4.6. Fig. 4.7 presents
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Figure 4.2

The MH-BCS-SPL reconstruction for video

Here, y
i

represents a set of CS measurements corresponding to frame i; in this example, key frames occur every 5

th frame.
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visual results of the reconstructions of a given frame of the News sequence sampled at a

subrate of S2 = 0.1. For all of these experiments, B = 16 pixels is used for the acquired

block size and a value of W = 15 pixels is used for the search window size. Additionally,

x1 was sampled at a subrate of S1 = 0.5 in the same manner as x2. In all cases, BCS-

SPL was used as the CS recovery procedure utilizing the 2D-DWT for  . As can be seen

in Figs. 4.3–4.6, the proposed Tikhonov-regularized MH prediction provides significantly

superior recovery for x2 at low subrates as compared to the `1-regularized prediction of

[30]. For higher subrates near S2 ⇡ 0.5, the performance of the `1 regularization is gen-

erally more competitive, and even exceeds that of the proposed Tikhonov regularization

for the News sequence at S2 = 0.5. However, such a high-subrate is of less interest than

low-subrate reconstructions due to the necessity of minimizing the number of measure-

ments used for non-key frames so as to maintain a low sampling rate overall. For such

low-subrate reconstruction, the proposed Tikhonov-regularized prediction also yields bet-

ter visual quality, as is evident in Fig. 4.7.

Interestingly, as can be seen in Figs. 4.3–4.6, the `1-regularized MH prediction does

not always outperform SH prediction, though it does show consistently superior perfor-

mance for the high-motion Football sequence (Fig. 4.5). On the other hand, the Tikhonov-

regularized always outperforms the SH prediction at all subrates considered. Additionally,

the proposed Tikhonov regularization appears suited to both low-motion as well as high-

motion sequences (e.g., Susie and Football, respectively).

In terms of computation, SH prediction performs much more quickly than the other

methods, taking just 10 to 20 seconds on our test system, while the `1 methods can take
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exceedingly long to calculate, up to 4 or 5 hours for a single frame. The Tikhonov regular-

ization, which can take just a few minutes to calculate for an entire frame, appears to be a

reasonable tradeoff between increased computation time and performance gain.

The proposed method works in general for both low-motion and high-motion sequences

(e.g. Susie and Football, respectively). Also, the system can work for any number of key or

reference frames (and of any quality). In these experiments, we used only a single frame to

form a prediction, but a bidirectional prediction can be formed by adding a reference frame

to the prediction stage. This has the effect of doubling the size of our hypothesis set, and

can increase the computation time of the prediction, but can overcome occlusion errors in

the prediction. The experiments were repeated for the bidirectional case by using a second

temporally neighboring frame which was encoded and decoded in the same manner as

described for the single reference frame case.

4.4.2 Full-Sequence Video Recovery

The results of the previous section compared various prediction strategies for the re-

construction of a single video frame; however, the task of primary interest is the CS re-

construction of an entire video sequence. We now present a comprehensive comparison

between several CS reconstruction algorithms for video. We use the first 88 frames of the

Foreman, Coastguard, Hall Monitor, and Mother and Daughter sequences. We define a

group of pictures (GOP) to be the distance P between consecutive key frames. In all cases,

we use a GOP size of P = 8 frames with key frames starting each GOP sampled with a
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Figure 4.3

Recovery of frame x2 of Foreman using frame x1 as reference.
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Figure 4.4

Recovery of frame x2 of News using frame x1 as reference.
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Figure 4.5

Recovery of frame x2 of Football using frame x1 as reference.
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Figure 4.6

Recovery of frame x2 of Susie using frame x1 as reference.
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(a) Original

(b) Independent (PSNR = 20.16 dB) (c) RR w/ SH (PSNR = 30.07 dB)

(d) RR w/ `1-MH (PSNR = 23.69 dB) (e) RR w/ Tikhonov-MH (PSNR = 30.55 dB)

Figure 4.7

Recovery of frame x2 of the News sequence using frame x1 as reference, S2 = 0.1,
S1 = 0.5.
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subrate of SK = 0.7. The intervening non-key frames have subrate SNK varying between

0.1 and 0.5.

We compare the MH-BCS-SPL reconstruction discussed in Sec. 4.3 to MC-BCS-SPL

[78]; we use the MC-BCS-SPL implementation available at the BCS-SPL website1. Being

block-based techniques, both MH-BCS-SPL as well as MC-BCS-SPL feature block-based

sampling in the spatial domain applied identically to each video frame; the block size for

both techniques is 16⇥ 16, and a DDWT [60] is used as the sparsity transform.

We also compare to two prominent CS reconstruction algorithms, Modified-CS-

Residual [112] and k-t FOCUSS [56, 57], both of which we have described previously in

Sec. 3.2. As discussed before, k-t FOCUSS uses iterative recovery with MEMC of non-

key frames from the neighboring key frames. On the other hand, Modified-CS-Residual

does not employ MEMC but rather attempts to explicitly track the sparsity pattern frame

to frame. We use the implementations of k-t FOCUSS2 and Modified-CS-Residual3 avail-

able from their respective authors. Although both k-t FOCUSS and Modified-CS-Residual

were originally designed for the reconstruction of dynamic MRI data, they are both largely

considered to be benchmark algorithms in present literature for the reconstruction of video

as well as. Both techniques, being oriented toward dynamic MRI, feature frame-by-frame

sampling driven by a 2D full-frame Fourier transform applied identically to each frame

with low-frequency coefficients benefiting from a higher sampling rate.
1
http://www.ece.msstate.edu/

˜

fowler/BCSSPL/

2
http://bisp.kaist.ac.kr/research_02.htm

3
http://home.engineering.iastate.edu/

˜

luwei/modcs/

59



Finally, we compare to straightforward, “intraframe” reconstruction of each frame of

the sequence independently from the others. We consider the multiscale (MS) variant of

BCS-SPL originally proposed in [41]; in the results here, we refer to it as “intraframe

MS-BCS-SPL.” We also consider an intraframe implementation of TV reconstruction [12]

(“intraframe TV”). We note that, in the results of [41], MS-BCS-SPL and TV outperformed

other techniques in terms of reconstruction quality for a single still image, with MS-BCS-

SPL generally producing higher-quality reconstructions with much less computation, but

TV being amenable to fast, spatial-domain sampling using a structurally random matrix

(SRM) [46]. In these results, the intraframe MS-BCS-SPL features block-based sampling

in the wavelet domain with blocks of size 16 ⇥ 16, while intraframe TV uses a full-frame

block-Hadamard SRM sampling [46]. Although Sec. 3.2 surveys a number of reconstruc-

tion algorithms for video, none of these other than k-t FOCUSS and Modified-CS-Residual

have, to our knowledge, implementations readily available at the time of this writing. As a

consequence, we present results for only those algorithms identified above.

Figs. 4.8–4.11 illustrate the performance of the various reconstructions for varying

non-key-frame subrate SNK. Visual results for a single frame of the Foreman sequence

are given in Fig. 4.12. As is apparent, MH-BCS-SPL almost always outperforms the other

techniques considered, sometimes by as much as 2–3 dB. The sole exceptions are the low-

est subrate for Hall Monitor, at which k-t FOCUSS slightly outperforms MH-BCS-SPL,

and the highest subrate for Foreman, at which intraframe TV outperforms MH-BCS-SPL.

The performance of the techniques other than MH-BCS-SPL is rather mixed—sometimes

MC-BCS-SPL or intraframe TV will be somewhat competitive with MH-BCS-SPL for cer-
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tain subrates and sequences. Additionally, the two techniques designed for dynamic MRI

(k-t FOCUSS and Modified-CS-Residual) are typically rather distant in performance from

MH-BCS-SPL with the exception of low subrates for the Hall Monitor sequence.

Although none of the implementations have been particularly optimized for execution

speed, we present reconstruction times for the algorithms in Table 4.1. Here, we measure

the average length of time required to reconstruction one frame out of the sequence. We

see that, while the intraframe MS-BCS-SPL is reconstruction is the fastest, the intraframe

TV reconstruction is the slowest, requiring some 20 minutes per frame.

Table 4.1

Reconstruction time in seconds per frame (spf)

Algorithm Time (spf)
Intraframe MS-BCS-SPL 10
k-t FOCUSS 46
MC-BCS-SPL 159
MH-BCS-SPL 324
Modified-CS-Residual 699
Intraframe TV 1223
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Figure 4.8

Performance of various CS reconstruction algorithms on the 88-frame Foreman sequence
for SK = 0.7.

PSNR is averaged over all frames of the sequence.
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Figure 4.9

Performance of various CS reconstruction algorithms on the 88-frame Coastguard
sequence for SK = 0.7.

PSNR is averaged over all frames of the sequence.
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Figure 4.10

Performance of various CS reconstruction algorithms on the 88-frame Hall Monitor
sequence for SK = 0.7.

PSNR is averaged over all frames of the sequence.
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Figure 4.11

Performance of various CS reconstruction algorithms on the 88-frame Mother and
Daughter sequence for SK = 0.7.

PSNR is averaged over all frames of the sequence.
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(a) MH-BCS-SPL (PSNR = 37.0 dB) (b) MC-BCS-SPL (PSNR = 36.7 dB)

(c) k-t FOCUSS (PSNR = 32.7 dB) (d) Modified-CS-Residual (PSNR = 29.6 dB)

(e) Intraframe MS-BCS-SPL (PSNR = 33.1 dB) (f) Intraframe TV (PSNR = 36.7 dB)

Figure 4.12

Reconstructions of frame 4 of the Foreman sequence for SK = 0.7 and SNK = 0.3.
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CHAPTER 5

NEAREST REGULARIZED SUBSPACE FOR CLASSIFICATION

In the previous chapter, we saw how the use of distance-weighted Tikhonov regulariza-

tion can benefit video-frame recovery by approximating blocks in each frame via a linear

combination of blocks drawn from a key frame. In this setting, Tikhonov regularization

was used in conjunction with residual reconstruction to accomplish the recovery of a signal

from a set of random projections.

The distance-weighted Tikhonov regularization we demonstrated is not limited to CS

recovery alone, however. In this chapter, we present how this form of regularization can

also be used for supervised classification tasks. Additionally, present a series of experi-

ments designed to evaluate the accuracy of the proposed classifier in correctly identifying

the material corresponding to unknown spectral reflectances. We conduct these tests on

ground-truthed hyperspectral-image (HSI) data captured from airborne hyperspectral sen-

sors. We have submitted a journal article [66], and its subsequent reivision, on this topic.

5.1 Classification of Hyperspectral Imagery

Over the last decade, HSI obtained by remote-sensing systems has been investigated

at length [62]. HSI provides high-resolution spectral information over a wide range of the

electromagnetic spectrum with hundreds of observed spectral bands. Numerous supervised
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classification techniques for hyperspectral data have been developed (e.g., [3, 70, 109,

101]) for a variety of application areas, including agricultural monitoring, environment-

pollution monitoring, and urban-growth analysis, among others.

The k-nearest-neighbor (k-NN) classifier (e.g., [92, 69]), one of the simplest and oldest

classification methods, has been used widely for HSI classification. This non-parametric

classifier usually employs a Euclidean distance metric between the training and testing

samples, assigning class labels according to the most frequently occurring class of the k

nearest training samples. However, the high-dimensional nature of HSI data creates com-

plications for k-NN classification in terms of both computational complexity and classifi-

cation accuracy. Many dimensionality-reducing techniques have been proposed to combat

this so-called “curse of dimensionality,” such as the popular linear discriminant analysis

(LDA) [38] and its variants (e.g., [64, 86]). Typically, parametric classification is em-

ployed after dimensionality reduction, for example the maximum likelihood estimation

(MLE) [29] of posterior probabilities. The support vector machine (SVM) [2] is a state-of-

the-art classifier which has also been shown to work well for hyperspectral classification

tasks. An SVM seeks to separate classes by learning an optimal decision hyperplane which

best separates the training samples in a kernel-induced high-dimensional feature space.

Variations of the SVM (e.g., [65, 70]) have been proposed to further improve classification

performance.

Recently, Wright et al. [119] introduced sparse-representation classification (SRC) for

face recognition. Later, Chen et al. [24] applied the sparse-representation method for HSI

classification. In essence, the SRC represents a testing sample by a sparse linear combi-
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nation of training samples calculated via `1 minimization. A similar approach was taken

by Zhang et al. [122] who proposed collaborative-representation classification (CRC) for

face recognition. However, contrary to the `1-based sparsity-inducing regularization of

SRC, CRC uses an `2-regularized minimization, providing competitive face-recognition

accuracy but at significantly lower computational complexity.

In this work, we couple nearest-subspace classification with the distance-weighted

Tikhonov regularization from [104, 42]. In resulting system, which can be considered to

be a nearest-regularized-subspace (NRS) classifier, an approximation for each testing sam-

ple is created via linear combination of all available training samples within each class.

In this manner, an approximation of each test sample is generated from training samples

of each class independently. The class label is then derived according to the class of the

most accurate representation. In a general sense, this NRS classification is similar to both

SRC and CRC in that testing samples are approximated via linear combinations of training

samples; however, NRS differs in that, not only does it use a non-collaborative approach

to the approximation, but it also employs non-uniform regularization.

We also introduce, as a further extension of the proposed NRS paradigm, a discrim–

ination-enhancing distance measure [117] designed to improve classification accuracy.

Furthermore, a competitive strategy is presented for automatically obtaining optimal per-

formance for the proposed system, thus avoiding involved parameter tuning via cross-

validation. Classification results are presented for several HSI datasets to demonstrate

the superior classification accuracy of the proposed approach when compared to tradi-

tional classification techniques. Ultimately, our work is composed of three main contri-
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butions: (1) the NRS classification system based on a distance-weighted Tikhonov regu-

larization (an `2-regularized term) calculating a representation for each testing sample; (2)

a discrimination-enhancing distance measure which improves the Tikhonov biasing term;

and (3) a competitive strategy that eliminates the need for involved parameter tuning.

5.2 Related Classification Techniques

5.2.1 Nearest-Neighbor Classification

The nearest-neighbor (NN) algorithm (e.g., [92, 69]) is perhaps the simplest supervised

method to predict a testing-sample label. The NN classifier attempts to find the training

sample nearest to the testing sample according to a given distance measure, assigning the

former’s category to the latter. Consider a dataset with training samples X = {x
i

}n
i=1 in Rd

(d-dimensional feature space) and class labels !
i

2 {1, 2, . . . , C}, where C is the number

of classes, and n is the total number of training samples. Let n
l

be the number of available

training samples for the lth class,
P

C

l=1 nl

= n. Commonly Euclidean distance is used,

such that the distance measure between training sample x

i

and given testing sample y is

d(x
i

,y) =
��
x

i

� y

��2

2
. (5.1)

The k-NN classifier is a straightforward extension of the original NN classifier. Instead

of using only one sample closest to testing point y, the k-NN classifier chooses the k

nearest samples from training data X. Typically, k is an odd number, and majority voting

is employed to decide the final label.

70



5.2.2 Nearest Subspace Classification

Instead of using the nearest training samples as indicators for the classification of a

given test sample, the Nearest Subspace (NS) approach operates on the assumption that

the nearest test samples from the true class form a subspace which the test sample lies

near. More specifically, say that we are given a test sample, y 2 Rd which is drawn from

one of C classes. Then, using each class’s training samples, X
l

2 Rd⇥nl , l 2 {1, . . . , C},

C subspaces are formed. The correlation between these subspaces is dependent upon the

training data used and the generating model of each class. One approach for generating

these class-specific subspaces is to use the Gram-Schmidt orthonormalization procedure,

whereby an orthogonal basis, U
l

, is formed to project onto span (X

l

). In the class featuring

information compression (CLAFIC) classifier [83], each U

l

is formed using the first k

eigenvectors of the class covariance matrix, ⌃
l

= X

T

l

X

l

. In other words, U
l

2 Rk⇥D

consists of the first k principal components (PCs) of X
l

. U
l

may even be constructed as a

random selection of k training samples from class l.

If U
l

is orthogonal, we can use it to construct a Rd 7! Rd linear mapping operator for

class l,

P

l

= U

l

U

l

T . (5.2)

However, if U
l

is non-orthogonal, we still may form P

l

via the Moore-Penrose pseudo-

inverse,

P

l

= U

l

U

†
l

= U

l

�
U

l

T

U

l

��1
U

l

T . (5.3)
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Using P

l

, we find the representation of y mapped onto S
l

, a k-dimensional subspace of

Rd,

b
y

l

= P

l

y. (5.4)

In the k-NN classifier, classification is determined according to proximity. For the NS

classifier, class assignment is determined by how well S
l

is aligned with y according to the

length of by
l

,

g
NS

(y) = arg max

l=1,...,C
||by

l

||2. (5.5)

If the basis vectors of P
l

are not of unit length, the classification may be modified to

g
NS

(y) = arg max

l=1,...,C

||by
l

||2
||y||2 . (5.6)

Refer to Fig. 5.1 for a demonstration of the NS classifier discriminating between two

classes for a two dimension setting.

Laarksonen proposed a different approach to the NS classifier with the Local Subspace

Classifier (LSC) [61]. The LSC, instead of finding the class which produces the most

aligned subspace, sought to find the class which could produce a linear manifold from

training points local to y to best represent y. This was done by selecting the k + 1 nearest

samples from each classes and choosing one additional offset point, µ. This offset was

then used to recenter the data such that µ was located at the origin, X
l,µ

= [x

l,1 � µ,x
l,2 �

µ, . . . ,x
l,k

� µ]. The projection matrix, P
l,µ

was then constructed in an identical fashion

to the traditional NS. Finally, the mapping was calculated as

b
y

l,µ

= P

l,µ

(y � µ) + µ. (5.7)

72



-2 -1 1 2 3 4

-1

1

2

3

4

5

-

6

y

b
y1

b
y2

S1

S2

Figure 5.1

Two-dimensional representation of the operation of the NS classifier. Since ||by1|| > ||by2||,
g
NS

assigns y to Class 1 which produced S1.
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The classification was then decided by the class whose generated manifold S
l,µ

provided

the best representation of y by having the smallest residual, which can be calculated as

e
y

l

= y � b
y

l,µ

= (I�P

l,µ

) (y � µ) . (5.8)

The final classification is then

g
LSC

(y) = arg min

l=1,...,C
||ey

l

||2. (5.9)

In Laarksonen’s work, it was shown that the LSC works very well for the classification

of data which can be well characterized by linear manifolds, such as hand-written digit

analysis [61]. However, it is not directly apparent that this should be true for the HSI data

we wish to classify. For this reason, we mainly focus on the NS approach to classification.

We also choose this paradigm because it also closely aligns with other recently proposed

classification techniques which we will discuss next.

5.2.3 `1- and `2-Regularized Collaborative Representation for Classification

Classification based on sparse representation has been recently studied for both for face

recognition [119], and HSI analysis [24]. The SRC approach offers classification which

is robust to noise and model errors; for more discussion of the geometrical and graphical

interpretations of SRC, we refer the reader to [119].

In essence, an SRC method classifies a testing sample y according to the class which

produces the most accurate sparse representation of y, i.e., the class which produces the

most parsimonious description using the training data as the “dictionary” for forming the
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Figure 5.2

Two-dimensional representation of the operation of the LSC classifier.

Here, one-dimensional linear manifolds are defined by two points from each class. The
decision boundary caused by g

LSC

is shown as the dash-dotted line. In this case, since the
residual to Class 1, ey1, is shortest, y is assigned to Class 1.
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representation. First, an approximation of y is calculated via a sparse linear combination

of all available training samples. That is, for training samples arranged column-wise in X,

e
y = X↵, (5.10)

where X is of dimensionality d ⇥ n, and ↵ is a n ⇥ 1 vector of sparse coefficients. Basis

pursuit denoising (BPDN) [22] offers one approach for calculating ↵ by solving the `1-

regularized minimization,

↵ = argmin

✓

��
y �X✓

��2

2
+ �

��✓
��
1
, (5.11)

where the regularization parameter, � > 0, balances the influence of the residual and spar-

sity terms. We mention the BPDN formulation in particular here because of its confluence

with several regularization techniques we present later. However, other formulations may

be equivalently substituted, such as the least absolute shrinkage and selection operator

(LASSO) [102] or basis pursuit (BP) [22]. In any event, after ↵ is calculated, a represen-

tation for each class, ey
l

, is created through a process we term post-partitioning.

The post-partitioning approach separates X into l different sub-dictionaries, X

l

=

{x
i

| 8i s.t. !
i

= l}; additionally, the coefficient vector ↵ is also “partitioned” similarly

into ↵
l

= {↵
i

| 8i s.t. !
i

= l}. After this partitioning, class-specific representations, ey
l

,

are calculated as

e
y

l

= X

l

↵
l

. (5.12)

We note that this use all the training data concurrently, as in post-partitioning, stands in

contrast to the traditional approach used in NS classifiers [61, 67] which use what we call

pre-partitioning. In such pre-partitioning, the training data is first partitioned into X

l

, and
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these partitions are instead used to calculate each e
y

l

independently, via, e.g., BPDN applied

independently for each partition.

In SRC, after calculating each e
y

l

via (5.12), the class label of y is then determined

according to the class which minimizes the residual. That is,

class(y) = arg min

l=1,...,C
(r

l

), (5.13)

where r
l

=

��e
y

l

�y

��2

2
is the residual between the approximation and corresponding testing

sample. A detailed description of the SRC algorithm is given as Fig. 5.3.

input : Training data X = {x
i

}n
i=1, class labels !

i

, testing sample y 2 Rd, �
Calculate ↵ via `1-minimization of (5.11);
for l 2 {1, 2, . . . , C} do

Partition X

l

, ↵
l

;
Calculate e

y

l

= X

l

↵
l

;
end
Decide class(y) via (5.13);
output: class(y)

Figure 5.3

The SRC Algorithm

In [119, 24], it was posited that the sparse representation alone led to the observed

improvements in classification accuracy. However, both [89] and [122] raise concerns over

the SRC framework. In [89], it was shown via analysis of singular values that face datasets

are, generally, not a suitable fit for SRC. To show that a sparse approach is unwarranted

for face recognition, a QR decomposition was used to calculate each e
y

l

instead of sparse
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approximation; the resulting performance this technique was competitive with that of the

SRC.

Additionally, in [122], it was suggested that the improvement in classification accuracy

was not due to sparsity, but rather due to the “collaborative” nature of the approximation.

Specifically, it was argued that using the entire training dataset to form approximations

via post-partitioning rather than using pre-partitioning as in NS allows for acceptable clas-

sification accuracy when signal dimensionality is high or when the number of available

training samples are few. To support this argument, [122] proposed the CRC approach

which swapped the `1 penalty of SRC for an `2 penalty in the style of Tikhonov regular-

ization [103]; i.e.,

↵ = argmin

✓

��
y �X✓

��2

2
+ �

��✓
��2

2
. (5.14)

Rather than enforcing a strong assumption about the nature of the dataset’s geometry, the

`2 regularization (or shrinkage) term instead serves only to overcome the potential for ill-

conditioning and ill-posedness in the inverse problem.

One particular advantage of CRC is that (5.14) may be solved with a simple and closed

form,

e
y = X(X

T

X+ �2I)�1
X

T

y = P

CRC

y, (5.15)

where the I is an identity matrix of appropriate size. After calculating e
y, the post-part–

itioning and classification is carried out in a manner identical to the SRC via (5.12)–(5.13).

It is noted in [122] that P
CRC

is dependent upon only the available training data. Thus, the

projector P
CRC

may be precomputed to reduce classification time for large volume tasks.
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CRC was shown to provide face-recognition accuracy comparable to SRC with much lower

computational cost. A detailed description of the CRC is given as Fig. 5.4.

input : Training data X = {x
i

}n
i=1, class labels !

i

, testing sample y 2 Rd, �
Calculate ↵ via (5.14);
for l 2 {1, 2, . . . , C} do

Partition X

l

, ↵
l

;
Calculate e

y

l

= X

l

↵
l

;
end
Decide class(y) via (5.13);
output: class(y)

Figure 5.4

The SRC Algorithm

The common element between these works and the sparse approaches of [119, 24] is the

assumption of a collaborative, post-partitioning framework for calculating class representa-

tions, ey
l

. However, this general approach is only loosely justified in previous literature with

few significant details given for the departure from the NS approach of pre-partitioning.

We investigate the effects of pre- and post-partitioning empirically for hyperspectral

data in Fig. 5.5 using the Indian Pines dataset with 1496 training samples (see Sec. 5.4.1

for a detailed description of this dataset). The classification accuracy is calculated over

a range of possible values for the free regularization parameter, �. We denote the pre-

partitioning technique here as CRC-Pre. The only difference between CRC-Pre and the

post-partitioning-based CRC is that each e
y

l

is calculated in the former using only the train-

ing samples from class l, X
l

. Even though HSI data resides in the context proposed for
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collaborative techniques—namely high-dimensionality data with few training samples—

Fig. 5.5 shows collaborative post-partitioning may actually do more harm than good. From

these results, it is evident that advances in face recognition using collaborative approxima-

tions cannot be applied wholesale to HSI classification. We argue that a different approach

is required.

5.3 Nearest Regularized Subspace Classifier

5.3.1 The Basic NRS Algorithm

In this section, we propose the NRS classifier which couples pre-partitioning as in

NS with non-uniform Tikhonov regularization for the classification of hyperspectral data

when few training samples are available. Like CRC, NRS makes use of Tikhonov reg-

ularization [103] to generate each e
y

l

. However, instead of using uniform regularization

as CRC does, we adopt a technique proposed in [104, 42] which is described previously

in Chapter 4, therein termed multihypothesis (MH) prediction, which biases atoms of X
l

according to their Euclidean distance from y. In [104, 42], the MH prediction method was

used to recover video macroblocks from a small set of random linear measurements taken

on the encoder side when a set of high-quality keyframe macroblocks was available on the

decoder side via a linear combination of these keyframe macroblocks. The non-uniform

nature of the regularization was used to penalize potentially inaccurate macroblocks from

being assigned large contributions in the final recovery.

Likewise, in supervised classification, we are given a set of training, or hypothesis,

data from which we desire to create approximations via linear combination. Namely, we
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Classification accuracy of pre- and post-partitioning (CRC-Pre and CRC, respectively) for
the Indian Pines HSI dataset over a range of values for the regularization parameter �.
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seek an approximation of y for each class, ey
l

, calculated only from the training samples

particular to class l, X
l

. We calculate the per-class coefficients, ↵
l

, according to

↵
l

= argmin

✓

��
y �X

l

✓
��2

2
+ �

��
�

l,y

✓
��2

2
, (5.16)

where �

l,y

is a biasing Tikhonov matrix specific to each class l and test sample y, and �

is a global regularization parameter which balances the minimization between the residual

and regularization terms. Specifically, we use a diagonal �
l

in the form of

�

l,y

=

2

6666664

��
y � x

l,1

��
2

0

. . .

0

��
y � x

l,nl

��
2

3

7777775
, (5.17)

where x1,x2, . . . ,xnl
are the columns of X

l

for the lth class. According to the minimization

defined in (5.16) and the structure of �
l,y

given in (5.17), hypotheses which are the most

dissimilar to y, in terms of Euclidean distance, should be given much less contribution

towards the linear combination than those which are most similar. Using this distance-

weighting measure for �

l,y

enforces a structural meaning to calculated weights without

making as stringent of an assumption as true sparsity. Each testing sample e
y

l

can then be

calculated in closed form,

e
y

l

= X

l

(X

T

l

X

l

+ �2�T

l,y

�

l,y

)

�1
X

T

l

y. (5.18)

After calculating e
y

l

for each class, the class assignment for y is calculated according to

(5.13).

The effect of the `2-regularization term based on �

l,y

is two-fold. First, if the training

samples are sufficiently similar in each class, or if a large set of training samples is used
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input : Training data X = {x
i

}n
i=1, class labels !

i

, testing sample y 2 Rd, �
Partition X

l

;
for l 2 {1, 2, . . . , C} do

Calculate �

l,y

via (5.17);
Calculate e

y

l

via (5.18);
end
Decide class(y) via (5.13);
output: class(y)

Figure 5.6

Proposed NRS Classifier

(n
l

� d), the matrix X

T

l

X

l

will either have poor conditioning or be near-singular. The

consequence is that the calculation of its inverse will be inaccurate or impossible, creating

a lack of backwards stability in the inverse problem, leading to the calculated weights

to be of high variance and to convey little to no meaning. Enforcing the regularization

term enforces stability on the problem by effectively inflating the singular values of X
l

,

improving the conditioning of the problem. Second, the form of the biasing matrix �

l,y

used in the regularization term allows for discrimination between classes. Without this

term, it is possible, in certain conditions, for each X

l

to approximate y with arbitrary

accuracy, thus removing any discriminative power from r
l

. This situation can be effected

by setting � = 0, causing (5.16) to become a least-squares (LSQ) problem. As illustrated

in Fig. 5.5, a near-zero regularization term destroys the accuracy of the classifier.

Figs. 5.7 and 5.8 show the decision boundaries produced for two synthetic two-dimen–

sional datasets using both the proposed NRS as well as SVM classifier using a radial-basis

kernel. In both cases, the datasets are not linearly separable and require complex bound-
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aries for accurate classification. In Fig. 5.7, both the SVM and NRS classifiers produce

a flexible boundary which accurately cuts between the two classes; however, the SVM

boundary appears to be a more general fit, with the NRS boundary being much more data

dependent. On the other hand, in Fig. 5.8, we see two overlapping classes with shared

means. Here, the NRS boundary performs better by cutting much closer to the mean,

reducing incorrect classification for samples generated from Class 1 near the mean.

There are several differences between the proposed method and the previously dis-

cussed k-NN, SRC, and CRC techniques. Firstly, the NRS classifier, unlike the k-NN

classifier, does not limit its classification to the correspondence between testing samples

and the provided training data alone. Instead, by forming an approximation from each

class, the NRS technique compares the testing sample with what can be considered an

imaginary training sample which could have conceivably been drawn from the same pro-

cess that produced the class training data provided. Secondly, the NRS classifier does

not rely on time-consuming iterative sparse-recovery algorithms, as is the case with the

SRC and other such sparse techniques for classification. While the recent investigations

of sparse regularizations have been of wide interest in signal processing in general, in this

area at least, they do not seem to provide significant performance gains to outweigh their

computationally expensive implementations. Lastly, while both the NRS and CRC tech-

niques employ Tikhonov regularization to calculate class approximations, the NRS cleaves

to the traditional approach of pre-partitioning and calculating class approximations inde-

pendently. Besides the non-collaborative nature of the NRS, we also propose non-uniform

regularization through use of �

l,y

. We note that, due to this alteration, a single projec-
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Figure 5.7

Decision boundaries determined for a two-class synthetic dataset.

NRS boundary calculated for � = 1. The decision boundary for the SVM classifier using
the radial-basis kernel is also shown.
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Figure 5.8

Decision boundaries determined for an intersectiong two-class synthetic dataset.

Top: Decision boundaries determined using the NRS classifier for � = 1 and the SVM
classifier using the radial-basis kernel for two synthetic normally distributed intersecting
classes with common mean. Bottom: Closer inspection of the class intersection.
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tion operator may not be computed for batch classification tasks when employing the NRS

classifier since �

l,y

is specific to each training sample.

When constructing the biasing matrix �

l,y

as in (5.17), we see that only the Euclidean

distance between training and test samples is considered. In Sec. 5.4, it is demonstrated

that this approach to biasing provides gains in classification accuracy for HSI datasets;

however, it is well known that using Euclidean distances for very high-dimensional data

can be an exercise in futility for certain data distributions. In the next section, we propose

a method to alter the construction of �
l,y

by using a generalized distance measure chosen

to maximize class discrimination.

5.3.2 Dynamic Regularization for Classification

From the previous section, we see that the proposed NRS classifier does not estimate or

explicitly account for class probability distributions—instead it measures only the ability

of each class to approximate a given target sample given a regularization parameter, �. This

regularization parameter is a significant factor in our proposed system, and, in fact, for all

regularization-based techniques which make use of weighted-sum penalty functions. From

Fig. 5.5, we can see that the setting of this parameter can also greatly affect classification

accuracy. Both the SRC and CRC approaches offer little information on how this parameter

should be set [24, 122] other than to suggest that cross-validation (CV) approaches could

be used—splitting the training set into two parts and testing for a value which maximizes

classification accuracy. However, the CV approach might not give an accurate estimation
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of the optimal � when very few training samples are available, or might even be infeasible

for extremely small training sets.

We propose to eliminate the need for CV estimations of � by constructing a classifier

which does not require fine tuning of many side variables (for which classifiers such as the

SVM are notorious) at the cost of somewhat increased computation. We do this by making

the observation that, in the case of classification, we are actually unconcerned with the

accuracy of the approximations ey
l

; rather, we want just that their proximities to y are such

that they allow us to discriminate the class of y accurately.

In order to observe the behavior of the NRS classifier with respect to �, a two-feature

synthetic testing environment is considered in Figs. 5.9 and 5.10. For this dataset, all

samples exist in only two dimensions, making the visualization of the classifier behavior

easier. Three classes of synthetic data randomly drawn from Gaussian distributions are

created with a single test sample drawn from one of these three classes. By treating each

approximation as a function of � for a fixed training set and test sample, ey
l

(�), and by

varying � over a range of values (in this case 10

4 to 10

�10), a set of approximations over

the domain of � tested, which we term a solution path, is generated for each class.

Looking at the approximation accuracy of the solution paths in Fig. 5.9, an interesting

phenomenon becomes apparent. For large values of �, the regularization term
��
�

l,y

w

l

��2

2

becomes the dominant term in the cost function of (5.16), and the representations approach

the zero vector to minimize this biased norm. However, for small �, the representations ap-

proach to the test sample, y. Between these two modes, an inflection point occurs wherein

the solution path rapidly changes direction. For classes whose members best represent y,
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Solution paths of the NRS classifier for a synthetic three-class problem in two dimensions
for a test sample drawn from class C3.

The 20 training samples per class and the solution paths for each class as � decreases
from 10

4 to 10

�5.

89



10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

λ

A
p

p
ro

xi
m

a
tio

n
 E

rr
o

r 
(M

S
E

)

 

 

C1 Solution Path
C2 Solution Path
C3 Solution Path

Figure 5.10

Approximation MSE of the NRS classifier for a synthetic three-class problem in two
dimensions for a test sample drawn from class C3.

Per-class NRS classifier approximation accuracy. Approximations generated by the true
class (C3) are more accurate for � > 10

�6.
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this saddle point is much less pronounced. For classes whose members are most dissimi-

lar, the inflection point is very pronounced, as the “initial” trajectories of these classes are

oriented away from y. However, the solution path created by the correct class tends to

approach y much more rapidly, i.e. the approximations for third class, ey3 , are much more

accurate for larger values of � than the approximations generated by the other classes. The

rapidity of convergence can be seen in Fig. 5.10.

We propose to use this feature to eliminate the need for setting a fixed value of � prior

to classification. We do this by setting a threshold, ✏, on the approximation accuracy,

1
d

||ey
l

(�) � y||22, and determining the classification based upon the first class to pass this

threshold as � is stepped from large to small values, causing the proposed method to re-

semble a “race” between the classes. From Fig. 5.10, we can see that ✏ is a more robust

parameter, as any choice within the range of [10�25, 100] would leave the classification un-

changed. This is in contrast to the parameter �, for which, in different test environments,

small variations can cause large differences in classification performance. Also, the addi-

tion of noise to the dataset can cause the optimal choice for � to shift away from a priori

expected values. Instead of indirectly accounting for noise by adjusting �, an approxima-

tion of the noise energy can be used to set ✏ directly. Additionally, if only a small number

of training samples are available to drive the classification, the effectiveness of using CV

approaches to estimate an optimal fixed setting for � can be greatly diminished. Also, it is

reasonable to assume that not every test sample requires the same value of � to ensure cor-

rect classification. The proposed method accounts for the individuality of each test sample

by sidestepping the need for a fixed � at all, testing each sample’s classification across a
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range of �. Together, these features make dynamic regularization more robust than using a

fixed � and ensure stable classifier performance for the practitioner.

5.3.3 Enhancing Discrimination Power

One popular method of enhancing discrimination for hyperspectral classification is

through LDA [38]. LDA projects from its natural, perhaps high-dimensional, space into

a lower-dimensional subspace via a transform procedure aimed at maximizing between-

class scatter while minimizing within-class scatter. Recently, an extension of LDA, locality

Fisher’s discriminant analysis (LFDA) [97], was proposed. LFDA combines the separabil-

ity enhancing power of LDA with locality-preserving projections (LPP) [52] to form a

transformation, L, which can handle multimodal non-Gaussian class distributions while

preserving the local structure of the class distributions in the projected subspace.

In LFDA, we define the affinity between x

i

and x

j

as A
i,j

= exp (�kx
i

� x

j

k2/�
i

�
j

),

where �
i

= kx
i

� x

(knn)
i

k denotes the local scaling of data samples in the neighborhood of

x

i

, and x

(knn)
i

is the knn-nearest neighbor of x
i

. The resulting A is a symmetric matrix of

size n ⇥ n, which measures the distance among data samples. In fact, the local between-

class S

(lb) and within-class S

(lw) scatter matrices of LFDA are the traditional LDA scat-

ter matrices S

(b) and S

(w) scaled appropriately via the affinity matrix A (see [65]). This

weight assignment provides an important benefit to the traditional LDA formulation—if

a class-conditional probability distribution function is multi-modal, different modes will

contribute to the scatter independently, thereby resulting in a more accurate representation

of multi-modal data. This important neighborhood-preserving property ensures that local
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neighborhood relationships in the original space are retained in the projected subspace.

The LFDA obtains good between-class separation while preserving the within-class local

structure simultaneously. The modified Fisher’s ratio in LFDA employs these local scatter

matrices to estimate the dimensionality-reduction projection as the solution, L, to gener-

alized eigenvalue problem, S(lb)
L = ⇤S

(lw)
L. The reader is referred to [65, 97] for more

details on LFDA.

In this work, we define a generalized distance measure by comparing the distances

between points within the projection space of L, namely,

D
LFDA

(x,y) = ||Lx� Ly||2,

=

q
(Lx� Ly)

T

(Lx� Ly),

=

q
(x� y)

T

M (x� y), (5.19)

where x and y are vectors of d⇥ 1, L is the transformation matrix with size of d0 ⇥ d (d0 is

the reduced dimensionality), M = L

T

L is a symmetric positive matrix, and D
LFDA

(x,y)

is a single scalar. Using (5.19), we modify the construction of the biasing Tikhonov matrix

of (5.17) to become

�

l,y

=

2

6666664

D
LFDA

(y,x
l,1) 0

. . .

0 D
LFDA

(y,x
l,nl

)

3

7777775
. (5.20)

We refer to the classifier using this construction of �
l,y

as NRS-LFDA. By comparing

distance relationships within the LFDA-projected space, we gain two distinct advantages

when biasing our Tikhonov regularization of (5.16). First, by reducing the dimensionality
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of the space in which distances are calculated, distances become more meaningful to the

classification task, rather than having all distances being large. Second, the space is chosen

in such a manner that inter-class separability is increased, further penalizing classes whose

memberships lie mostly distant from the target point. Additionally, the LPP of LFDA

means that samples which are truly neighbors of y are also seen as neighbors within the

projected space. Without such locality preservation, calculating distances within a lower-

dimensional space (such as that produced by LDA) might not give any information on

within-class distance relationships with y and might offer little benefit in terms of classi-

fication accuracy. In the next section, we present results which demonstrate that the NRS-

LFDA technique presented here does indeed improve classification accuracy as compared

to the original NRS which uses Euclidean distances in the original space.

5.4 Experiments

5.4.1 Experimental Hyperspectral Data

In this section, we demonstrate the effectiveness of the both proposed NRS and NRS-

LFDA classifiers on HSI datasets. The first HSI dataset in our tests was acquired using

NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and was col-

lected over northwest Indiana’s Indian Pines test site in June 19921. The image represents

a vegetation-classification scenario with 145⇥145 pixels and 220 spectral bands in the 0.4-

to 2.45-µm region of the visible and infrared spectrum with a spatial resolution of 20 m.

The two main crops, soybean and corn, shown in the HSI are in their early growth stage.

The notation no till, min till, and clean till indicate the amount of previous crop residue
1
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec
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remaining. There are 16 different land-cover classes in original ground truth; however,

we conduct our experiments with eight classes, allowing for more training samples from

a statistical viewpoint [73]. Approximately 8600 labeled pixels are employed to train and

validate the efficacy of the proposed classification methods. This data is partitioned into

approximately 1496 training pixels and 7102 testing pixels.

The other two HSI datasets used in this work were collected by the Reflective Optics

System Imaging Spectrometer (ROSIS) sensor [43]. The image, covering the city of Pavia,

Italy, was collected under the HySens project managed by DLR (the German Aerospace

Agency). The images have 115 spectral bands with a spectral coverage from 0.43- to 0.86-

µm, and a spatial resolution of 1.3 m. Two scenes are used in our experiment. The first

one of these is the university area which has 103 spectral bands with a spatial coverage of

610⇥340 pixels. The second one is the Pavia city center which has 102 spectral bands with

1096⇥715 pixels formed by combining two separate images representing different areas of

the Pavia city. The numbers of training and testing samples used for the University of Pavia

data set are 1476 and 7380, respectively. The numbers of training and testing samples used

for the Pavia Centre data set are 1477 and 8862, respectively.

5.4.2 Experiments

We compare our proposed methods with k-NN, SRC2, CRC-Pre, SVM, and the re-

cently proposed LFDA-SVM [65] classifiers. For the k-NN classifier, we find that k = 3

usually provides better classification performance compared to other values (such as 1, 5,
2`1-minimization is implemented by l1 ls.m from http://www.stanford.edu/

˜

boyd/

software.html
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7, etc.). For SRC, we chose the parameter � = 0.01 in our experiments. For CRC-Pre,

the optimal parameter � is 0.2 for the Indian Pines dataset, 0.25 for the University of Pavia

dataset, and 0.6 for the Pavia Centre dataset. The optimal parameters for SVM and LFDA-

SVM can be found in [65]. For NRS-LFDA, the dimensionality of LFDA is around 10

for experimental datasets, and we found it is not sensitive to sample size. Additionally,

for both NRS and NRS-LFDA, a threshold of ✏ = 10

�3 was used. In practical situations,

the number of available training samples is often insufficient for each class. We illustrate

the sensitivity of each classifier to the number of available training samples by testing over

different percentages of the dataset used for training while retaining the prior probability

of each class. To avoid any bias, we randomly choose a subset of training samples for each

sample-size value and repeat the experiment 10 times, reporting the average classification

accuracy.

It is obvious from Fig. 5.11 that the proposed methods—the NRS and NRS-LFDA

classifiers—outperform other approaches, especially under the small training-size classifi-

cation scenario. The k-NN classifier has the worst classification accuracy, while SVM does

not perform as well as either CRC-Pre or SRC do for the cases of small-training-samples-

size. It is worthwhile mentioning that NRS-LFDA classifier has on average 3% better

accuracy than the NRS classifier and even greater improvements in accuracy over the other

tested classifiers, which verifies that the discriminant enhancing LFDA distance metric

works well for hyperspectral data. Figs. 5.12–5.13 show the overall accuracy as a func-

tion of number of training samples for the University of Pavia and Pavia Centre datasets,

respectively. For these two Pavia datasets, SRC and CRC-Pre have unfavorable classifica-
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tion accuracies, even lower than k-NN. The proposed NRS-LFDA and NRS classifiers still

provide the best classification accuracy of the tested classifiers for these datasets.

Fig. 5.14 provides a visual inspection of the classification maps generated using the

whole HSI scene for the Indian Pines dataset (145 ⇥ 145, including unlabeled pixels). To

facilitate easy comparison between classification methods, only areas for which we have

ground truth are shown in these maps. In Fig. 5.14, our proposed techniques show the

best spatial homogeneity of the tested approaches. This homogeneity is most pronounced

within the “Soybean-min till” and “Soybean-clean till” areas.

Finally, we compare the computational complexity of the classification methods. All

the experiments are carried out using MATLAB on a 3.2-GHz machine with 5.8 GB of

RAM. As an example, the execution times (in seconds) to train and validate with the Indian

Pines dataset is shown in Table 5.1. We find that the NRS classifier generally runs around

15 times slower than CRC-Pre, but around 10 times faster than SRC. Notice that both

CRC-Pre and SRC require either prior information on the optimal parameter �, or for a

CV approach to be used to estimate this parameter. However, the NRS and NRS-LFDA

classifiers do not require such fine tuning. If we were to provide the optimal � for them,

the execution time decreases accordingly (NRS: 135 s, NRS-LFDA: 346 s).
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Figure 5.11

Classification accuracy versus the number of training samples for the Indian Pines dataset.
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Figure 5.12

Classification accuracy versus the number of training samples for the University of Pavia
dataset.
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Figure 5.13

Classification accuracy versus the number of training samples for the Pavia Centre dataset.
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(a) False Color Image (b) Ground Truth

(c) k-NN (d) CRC-Pre (e) SRC

(c) LFDA-SVM (d) NRS (e) NRS-LFDA
    

Corn-no till Corn-min till Grass/Pasture Hay-windowed 
    

Soybean-no till Soybean-min till Soybean-clean till Woods 

Figure 5.14

Thematic maps resulting from classification using 748 training samples for the Indian
Pines HSI dataset.
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Table 5.1

Execution time (in seconds) to train and validate with the Indian Pines dataset using 748
samples for training and the whole scene for testing.

Algorithm Time (s)
k-NN 24
CRC-Pre 132
NRS 2210
SVM 5364
LFDA-SVM 5367
NRS-LFDA 9633
SRC 23245
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we investigated how best to approach video in terms of CS acqui-

sition and recovery. We researched different methods of recovering video signals from CS

acquired measurements, such as frame by frame, volumetric, and residual recovery. From

these experiments, we found residual recovery to provide superior distortion performance

as compared to the two other approaches. In order to employ residual recovery in practical

way, a method of creating accurate predictions from only measurement data was needed.

We sought to do this without changing any of the CS imaging hardware suggested in Sec.

2.3.1.

We showed that using a block-match method within the projected, or measurement,

domain served as the best method for creating frame predictions. We extended this method

from a SH case to a MH one. We further investigated MH prediction by researching differ-

ent methods of finding hypothesis weighting vectors using both `1 and Tikhonov regular-

ization. We found that our proposed method of Tikhonov regularization created predictions

which significantly enhanced the performance of the residual recovery in relation to the `1-

regularized MH method, SH prediction, and frame-by-frame recovery.
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However, in this work, we did not investigate tuning the Tikhonov regularization for

finding the MH weights. This regularization could be optimized on a block-by-block basis

based upon statistics such as the ratio of maximum and minimum singular values of the

hypothesis matrix at each block, H
b

. Also, the function used to generate the values on the

diagonal of � could be investigated further. We used a Euclidean distance, but there is no

reason that a different metric might not perform better. We have continued to pursue this

topic, but at the time of this writing, this work is not yet complete.

We specifically investigate blocks from temporally neighboring frames serving as hy-

potheses for a current frame as a form of inter-prediction, but there is also no reason that

some form of intra-prediction could not also work well, as spatially neighboring blocks

within a frame are also likely to have correlated content. The H.264 video-coding standard

allows for intra-predicted blocks and there could be some benefit to investigating their use

in the case of CS recovery. This topic was covered in one of our works [21] in the con-

text of still image recovery, but similar intra-prediction strategies and sub-block matching

techniques could be employed in video recovery, as well.

Additionally, the use of signal predictions created from side information or from mea-

surements of other highly correlated signals does not need to be limited to only the recovery

of video signals. This general concept as applied to a number of different application areas

such as bioinformatics or distributed sensor networks could be explored. We have shown

in our a number of our works [105, 106, 107] that CS of multiview images is another appli-

cation to which our techniques are well suited. Since multiview imaging is a specific case

of plenoptic, or light-field, imaging for coarse angular resolution, our techniques might
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also be adapted for use in the recovery of entire sets of dynamic light-field data acquired

using the CS framework.

Concurrent to the writing of this document, a recent work on CS video acquisition and

recovery was proposed, termed CS multi-scale video (CS-MUVI) [93]. The CS-MUVI

framework eliminates the need for frame-based video acquisition, instead opting for a

model of sampling in which each measurement is treated as sampling of dynamic scene

content at a different point in time. In this manner, video may be recovered at variable

frame rates determined at recovery time, rather than a frame rate fixed by the encoding

device. Further work may be done to determine the effectiveness of block-based sampling

schemes within this environment. Additionally, the method of [93] might be extended

according to the bootstrap methods of [106, 107].

For the NRS classifier, while we demonstrate classification performance competitive

with state-of-the-art HSI classification techniques, there are still a number of extensions

which could be made to the work. Firstly, the classifier can be extended to compensate

for corrupted, mislabeled, or otherwise inaccurate training samples. One approach to this

problem might be to use redundant DWT (RDWT) coefficients of different scales as in-

dependent classifications and then use these scale classifications to derive a collaborative

final classification as is done in [87]. Additionally, alternate methods of determining the

parameters of �
l,y

can be investigated to enhance classification accuracy by enhancing the

discriminatory power of the NRS classifier.

The NRS classifier also need not be applied only to the task of HSI classification.

It might be further adapted to handle other high-dimensionality supervised classification
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tasks when very few samples are available for training. Face recognition is one such task

which the NRS might be well suited to. The NRS technique might also be advantageous

for unsupervised clustering and semi-supervised classification tasks.

The topics covered in this dissertation show many open doors in emerging areas of

high-dimensional signal processing. CS as a field, though having matured somewhat, still

leaves many questions unanswered in terms of its ultimate applicability to real-life sensing

systems. However, CS has already been shown to be immediately applicable in areas such

as medical imaging, significantly decreasing MRI and CT scan times. CS has also been

shown to be useful in wideband spectrum sensing [75, 74] and even astronomical imaging

[9], as evidenced by the CS experiments conducted by the Herschel space telescope. In

terms of CS imaging, some companies, such as InView in Austin, TX, are actively investi-

gating the SPC framework for hyperspectral [91] and shortwave infrared (SWIR) imaging.

These developments point towards the continuing growth of CS as a dynamic and fruitful

area of research in signal processing.
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