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Abstract In the compressed sensing of multiview images and video sequences,
signal prediction is incorporated into the reconstruction process in order to
exploit the high degree of interview and temporal correlation common to mul-
tiview scenarios. Instead of recovering each individual frame independently,
neighboring frames in both the view and temporal directions are used to
calculate a prediction of a target frame, and the difference is used to drive
a residual-based compressed-sensing reconstruction. The proposed approach
demonstrates a significant gain in reconstruction quality relative to the straight-
forward compressed-sensing recovery of each frame independently of the oth-
ers in the multiview set, as well as a significant performance advantage as
compared to a pair of benchmark multiple-frame compressed-sensing recon-
structions.
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1 Introduction

The falling cost of high-quality video sensors coupled with their increasingly
widespread use in surveillance, defense, and entertainment applications has led
to heightened demand for multi-sensor video-acquisition systems. In surveil-
lance applications, for example, the use of video-sensor networks has been
widely investigated, but the memory and computation burden of capturing
and encoding high-quality video for transmission and storage has served as
an impediment to the adoption of multi-sensor technology in many applica-
tions [27]. In the area of entertainment, much work has been done recently to
promote the production and consumption of 3D video content, which so far
has largely taken the form of stereoscopic video-display systems with a fixed
viewpoint. Future display technologies, such as holography, promise a more re-
alistic and engaging viewing experience by permitting many different viewing
angles; however, capturing such multiview-image data requires a system more
sophisticated than the two-camera approach widely used today. In these, and
in other applications, the excessively voluminous nature of multiview-image
and video data causes a serious impediment to the continued development of
these fields.

Compressed sensing (CS) (e.g., [5]) is a recent paradigm which permits
linear projection of a signal into a dimension much lower than that of the
original signal while still providing a method of recovery which, under cer-
tain strict constraints, incurs little to no loss. The CS methodology effectively
combines signal acquisition and dimensionality reduction into a single step,
thereby reducing memory and computational requirements within the sensing
device as well as transmission bandwidth. Particular interest has centered on
CS for images and video, and physical implementations based upon CS have
been created, such as the “single-pixel” camera of [10].

In the context of multiview images and multiview video, CS has the poten-
tial to greatly enhance multiview signal acquisition not only by decreasing the
inherent memory cost by lowering the number of measurements taken, but also
by decreasing the computational burden on the sensor. As the dimensionality-
reduction aspect of CS can be accomplished via modulation and projection of
the analog light signal onto a single sensor [10], essentially zero computation
is needed on-board the actual sensing device. Therefore, it is hoped that this
acquisition process will be realizable with video sensors that are much cheaper
and energy efficient than classical camera architectures, permitting thus longer
operation time in wireless environments.

In this paper, we consider CS recovery of multiview image and multiview
video sequences wherein we assume that each frame in each view is acquired
directly in a reduced dimensionality via a CS-based image sensor. Moreover,
knowing that multiple images within a multiview dataset are highly corre-
lated, we exploit this correlation in the CS reconstruction process. Specifically,
in the case of multiview images, we capitalize on disparity estimation (DE)
and disparity compensation (DC) between adjacent views to provide a predic-
tion of the current image to be reconstructed. The DE/DC prediction drives
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a residual-based CS reconstruction of the current view. This process is further
extended to the case of multiview video, wherein DE/DC is coupled with mo-
tion estimation (ME) and motion compensation (MC) such that predictions
for the current view are created both from adjacent views as well as from tem-
porally neighboring frames. Experimental results show that the incorporation
of DE/DC and, in the case of multiview video, ME/MC, into the CS recovery
process provides a significant increase in reconstruction quality as compared to
the straightforward CS reconstruction of each individual view independently
of the others.

Different from our own preliminary work [31–33] wherein we proposed the
general use of simple block-based DE/DC within a CS framework for multi-
view images, this present work focuses on DE/DC methods driven by optical
flow in a complete CS acquisition and reconstruction system. In this work,
we also propose the CS recovery of multiview video by simultaneous use of
DE/DC and ME/MC and present a comprehensive and complete discussion
on the prediction-based CS-reconstruction approach. We note that this work
expands on preliminary results for CS video initially reported in [13]; again,
the more thorough discussion presented here employs optical flow for DE/DC
and reports results in greater detail. Additionally, two alternative approaches
to prediction-aided CS multiview recovery are considered in order to demon-
strate the efficacy of our proposed prediction strategy for multiview signal
recovery in several reconstruction settings.

The remainder of this paper is organized as follows. First, in Section 2, we
briefly overview CS theory and the prior use of CS for image reconstruction.
Then, in Section 3, we describe the general procedure of CS recovery based
on signal prediction. In Section 4, we describe the specific algorithms we use
for multiview-image and multiview-video reconstruction, and, in Section 6,
we present a battery of experimental results that evaluate the performance of
these prediction-based recoveries. Finally, we make several concluding remarks
in Section 7.

2 Background

One of the main advantages of the CS paradigm is the very low computational
burden placed on the signal-acquisition process, which effectively acquires the
desired signal directly in a reduced dimensionality. Specifically, CS requires
only the projection of the signal x ∈ "N , which is sparse in some transform
basis Ψ , onto some measurement basis Φ of size N ×M where M $ N . The
result of this signal-acquisition process is the M -dimensional vector of mea-
surements, y = Φx. Φ is often chosen to be a random matrix because it satisfies
the incoherency and isometry requirements of CS reconstruction for any struc-
tured signal transform Ψ with high probability [5]. For simplicity, we assume
Φ is orthonormal (ΦTΦ = I). We define the subsampling rate, or subrate, of
the CS acquisition process to be M/N .
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This computationally-light signal-acquisition procedure offloads most the
computation associated with CS onto the signal-reconstruction process. Be-
cause the inverse of the projection x̂ = Φ−1y is ill-posed, we cannot directly
solve the inverse problem to find the original signal from the given measure-
ments.

As x is assumed to be sparse with respect to some transform basis Ψ ,
the reconstruction process entails the production of a sparse set of significant
transform coefficients, x̂ = Ψx. The recovery procedure searches for x̂ with the
smallest l0 norm that is consistent with the observed y; i.e.,

x̂ = argmin
x̂

‖x̂‖
0
, such that y = ΦΨ−1x̂, (1)

where Ψ−1 represents the inverse transform. Due to NP-completeness of this
l0 optimization, alternative procedures have been proposed for sparse recon-
structions using l1 or l2-norms.

Indeed, one resorts to using any of a number of CS-reconstruction ap-
proaches that have appeared in recent literature and include convex program-
ming [8], gradient-descent [11], greedy-pursuit [34], and iterative-thresholding
[2] implementations, for solving the l1 or l2 relaxations of (1). Unfortunately,
many of these CS reconstruction algorithms tend to be rather computationally
complex, and large-dimensionality CS reconstructions such as those needed for
natural images significantly exacerbate the problem.

To face this issue, Gan [15] proposed partitioning natural-image CS acqui-
sition into distinct blocks, tantamount to imposing a block-diagonal structure
on Φ. A Wiener smoothing step was used within an iterative-threshold re-
covery to remove blocking artifacts resulting from the discontinuous nature
of the partitioning. One other advantage to this method is that the storage
requirement for Φ at the signal-acquisition platform is also reduced by orders
of magnitude, as the same projection can be used for each block within the
image. This method was extended in [25] by making use of directional trans-
forms for sparsity basis Ψ coupled with a thresholding based on statistical
wavelet models. The resulting algorithm was called block compressed sensing
with smoothed projected Landweber (BCS-SPL) reconstruction in [25].

Another popular approach to the CS reconstruction of images, total vari-
ation (TV) minimization [6, 7, 30], uses piece-wise smooth characteristics of
natural signals to great effect. Instead of finding the sparsest solution within
the domain of transform Ψ , TV minimization finds the “smoothest” solution
within the space of possible solutions. Anisotropic TV minimization makes use
of the #1 norm to enforce sparsity upon the gradient of the solution, creating
a penalty function of the form

TV (x) =
∑

i,j

|xi+1,j − xi,j |+ |xi,j+1 − xi,j | . (2)

Using the penalty above, the CS recovery problem can be stated as

x̂ = argmin
x

||y − Φx||2 + λ TV (x). (3)
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TV minimization has been widely used in CS recovery; however, to date, many
of the methods used to solve (3) (such as second-order-cone programs using
interior-point or log-barrier methods), are too computationally complex to be
of practical use except for exceedingly small image sizes. Indeed, the cost of re-
construction using such approaches has prevented the use of TV minimization
for CS reconstruction in many applications where large volumes of data must
be processed, such as multiview image and video. Other, more computation-
ally efficient, approaches to solving (3) have been proposed, such as iterative
soft thresholding [1] and alternating minimization [41].

In [21] an augmented Lagrangian formulation coupled with an alternat-
ing direction algorithm (TV-AL3) was proposed for solving (3) for both its
anisotropic and isotropic forms. The TV-AL3 method retains the same recon-
struction accuracy afforded by TV minimization for CS image recovery while
decreasing the computation time by orders of magnitude over other techniques.
Because of the decreased computational burden, TV-AL3 permits us to make
use of high-quality TV minimization for the reconstruction of multiview data.
Below, we use TV-AL3, along with BCS-SPL, to demonstrate the efficacy
of our proposed prediction strategy for multiview signal recovery in several
reconstruction settings.

3 CS Reconstruction Using Signal Prediction

In traditional source coding, it has long been known that signal prediction
can play a significant role in increasing signal compressibility. For example,
DPCM methods have been used to code many different forms of data and have,
in particular, seen extensive use in video-coding algorithms. In fact, frame
prediction comprises the core functionality of many video-coding standards
such as MPEG-2 and H.264/AVC. By creating a frame prediction from highly
correlated, temporally neighboring frames by way of some form of ME and MC,
a temporally decorrelated and compressible residual frame can be calculated
by the subtraction of the predicted frame from the original at the encoder.

Whereas in traditional video coding, ME/MC is used at the encoder side
in order to produce a highly compressible residual, in the CS paradigm, pre-
diction must take place at the opposite end of the system, i.e., in the signal-
reconstruction process. Decorrelation achieved via prediction aids CS recovery
by increasing the compressibility of the signal. Here, as is common in CS litera-
ture, signal “compressibility” refers specifically to the case in which coefficient
magnitudes exhibit a power-law decay in some transform domain [3]. The more
compressible a signal is, the closer the sparse reconstruction resulting from CS
recovery will approximate it. (e.g., see Theorem 3.2 of [4]).

When one is considering the CS reconstruction of multiple images—either
multiple views or frames in a set of multiview video sequences—it is desir-
able to include some form of inter-image decorrelation into the CS-recovery
process. Many techniques have approached this problem through 3D trans-
forms, treating a collection of frames as a volume (e.g., [39, 40]). This method,
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however, is problematic because of the limited exploitation of frame-to-frame
object motion; this is the case in which the multiple frames are either tempo-
rally consecutive video frames or different views from a dataset of multiview
images. The alternative is decorrelation that takes advantage of motion or
disparity between the frames and views.

Specifically, suppose we have some frame xd for which we calculate a pre-
diction xp from other frames in the collection of frames. Here, our collection of
frames may be a temporal set from a video sequence, or a set of multiple views
in a multiview dataset. In either case, we can substitute the original problem
of CS reconstruction of xd from its measurements yd = Φxd with the recovery
of the residual between xd and its prediction xp due to the linear nature of CS
acquisition, i.e.:

r = Φrd = Φ(xd − xp) = yd − Φxp. (4)

From here, we can see that it is possible to recover the residual frame rd by
CS reconstruction of the difference, r, between the original measurements (yd)
and the projection of the prediction into the measurement domain. The final
recovery of x̂d is then

x̂d = xp +CSRecovery(r,Φ). (5)

If the prediction process producing xp is reasonably accurate, the residual
frame rd should be more compressible than the original image xd. This is
demonstrated empirically for a video sequence in Fig. 1 wherein it is seen
that the transform-coefficient magnitudes decay more quickly for a motion-
compensated residual frame than for the original video frame.

In the sequel, we investigate the adaptation of this approach to the CS
recovery of multiview images as well as multiview video. We propose to further
improve the quality of the CS recovery in an iterative manner, by jointly
reconstructing the frames and repeating the process described in (4)–(5) on
higher fidelity images. This way, a more precise prediction xp for the current
frame is obtained. As the resulting image residual is more compressible with
each iteration, a high-quality recovery x̂d of the current image is obtained at
the end of the reconstruction cycle.

4 CS Reconstruction of Multiview Images and Multiview Video
Sequences

In the sequel, we adapt the prediction-driven CS reconstruction of (4)–(5) to
the case of multiview images in which the collection of frames in question is
a set of highly correlated images of a single subject taken from slightly differ-
ent perspectives. Different from [13] wherein a simple block-based DE is per-
formed, in this work, we propose DE using optical flow [23] to calculate dense
disparity fields, along with warping DC to produce a high-accuracy prediction
xp of the current view xd from adjacent views which are likely to be highly
correlated with xd. We first consider the reconstruction of a single view within
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a set of multiview images in Section 4.1 before extending the process into a
multistage reconstruction of the entire set of multiview images in Section 4.2.
Finally, in Section 4.3, we deploy the proposed multiview reconstruction on
multiview video, incorporating both DE/DC as well traditional block-based
ME/MC into the reconstruction process.

4.1 Single-View Reconstruction

In order to provide a CS reconstruction of a single view within a set of multi-
view images, we couple a still-image recovery with a DE/DC-driven prediction
process. We call the resulting algorithm DC-CS. In our test framework we con-
sider two CS reconstruction methods, namely BCS-SPL of [13] and TV-AL3
of [21].

Initially, all the multiview images are CS recovered independently from one
another; i.e.,

x̂init
d = CSRecovery(yd,Φd). (6)

In the sequel, this first reconstruction will be referred to as “initial” recovery
stage. Subsequently, our DC-CS algorithm is partitioned into two phases. In
the first phase, an initial prediction xinit

p for the current view xd is created by
bidirectionally interpolating the closest adjacent views from the initial recov-
ery,

xinit
p = ImageInterpolation(x̂init

d−1, x̂
init
d+1), (7)

where x̂init
d−1 and x̂init

d+1 are the “left”and “right” neighbors of xd, respectively.
In this interpolation, we use as references the reconstructions obtained in the
initial stage, i.e. x̂init

d−1 and x̂init
d+1.

The image interpolation is performed as in [17]: the neighboring views
x̂init
d−1 and x̂init

d+1 are firstly spatially low-pass filtered, then a classical forward
block-matching DE is performed between them, which will be further refined
in order to obtain a bidirectional view interpolation. Next, we calculate the
residual r between the original observation yd and the observation resulting
from the projection of xp using the same measurement matrix, Φd, i.e.:

r = yd − yp, s.t. yp = Φdx
init
p . (8)

This residual then drives the CS reconstruction, r̂ = CSRecovery(r,Φd).
Note that the use of the original Φd, used at the acquisition of yd, is requested
at this step, in order to insure the correlation between the original observation
and the one obtained following the prediction process yp (i.e., the same linear
combination given by Φd is applied to xd and respectively, xinit

p , for obtaining
yd and respectively, yp).

In the second phase, the reconstructed residual r̂ produces the reconstruc-
tion, i.e.:

x̂d = r̂ + xinit
p . (9)

The prediction process then repeats, but this time DE/DC is used instead
of interpolation (in the sequel, we denote by xp the result of the DE/DC
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prediction). Specifically, DV d−1 and DV d+1 are the dense fields of left and
right disparity vectors, respectively; these are obtained from DE applied to
the current reconstruction, x̂d, of the current image and the left and right
adjacent images. These disparity vectors subsequently drive the warping DC of
the current image to produce the current prediction, xp, and its corresponding
residual, r, which are further used for obtaining the reconstruction x̂d.

In DC-CS reconstruction, each iteration of the second phase provides an
incremental increase in recovery quality of the current view, thereby providing
a better target to which to match the neighboring frames during the DE/DC
stage. Indeed, the predictor xp at iteration k of this second phase will be
obtained by DC between the enhanced reconstruction x̂d (obtained after the
k−1 iteration) and its neighbors (i.e., the reference views, for which the quality
does not change from one iteration to another, and for which the reconstruction
is obtained by direct CS-recovery); the improvement of reconstruction quality
at iteration k is due to the refinement of the disparity vectors, leading to a more
sparse and smoother residual r, which is thus better reconstructed (leading to
an enhanced view reconstruction, x̂d, at the end of the k-th iteration). This
process could conceivably be repeated until x̂d converges to a final solution.

As such, the second phase of the algorithm may be repeated as long as
the difference, Dr, between two successive residual energies is higher than
threshold ε,

Dk
r = Ek−1

r − Ek
r > ε, (10)

where Ek
r = ||rk||22 is the energy of the prediction residual at iteration k. In

order to speed-up the recovery process, one can limit the number of iterations;
we have found that usingK = 3 iterations provides quite adequate convergence
(i.e., we have observed that Dk

r decreases very quickly, being less than 0.05
after the first three iterations, for most of the multiview image sets). The
complete algorithm is described in Fig. 2.

We note that there exists a variety of DE/DC methods of varying sophis-
tication, some producing high-quality predictions driven by depth or parallax
information between views. Any of these DE/DC strategies could be used in
DC-CS by simply placing them in the DE and DC blocks in Fig. 2. In [13, 31–
33], a simple block-based DE/DC procedure (similar to traditional ME/MC)
was used due to its decreased computational burden and complexity of imple-
mentation. In the present work, we employ a dense DE/DC method, namely
the optical-flow algorithm proposed in [23], which provides much more accu-
rate view predictions at each stage of recovery, therefore improving the final
accuracy of multiview images recovered using the DC-CS framework as com-
pared to a simple block-based compensation. For example, in Fig. 4 we show
a comparison between optical flow and block-matching DE/DC (as used orig-
inally in [13, 31–33]) in our proposed image-recovery framework. These results
demonstrate that recovery performance can indeed be aided by the use of more
sophisticated DE/DC strategies.

In some contexts, when global sampling is available to the acquisition de-
vice, TV-based image recovery techniques can provide very accurate recovery
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performance. In our prior work, [31–33], we focused exclusively on the appli-
cation of BCS to multiview image acquisition due to its practical implemen-
tation advantages in terms of cost to the acquisition device, and also for its
reduced computational reconstruction costs [13]. However, advances in the de-
sign and implementation of functionally derived projection matrices, as is done
with structured random matrices (SRM) [16, 29], can allow for efficient imple-
mentation of global CS image-sampling strategies. Additionally, algorithmic
advances in the calculation of TV minimization have decreased the computa-
tional cost for recovering high-dimensional signals by orders of magnitude [21].
These developments allow one to avoid the accuracy-cost trade-off inherent in
the BCS framework, providing significant gains in reconstruction accuracy.
We propose the use of TV-based view reconstruction, along with BCS-SPL,
to show that the multistage multiview-recovery framework we propose can ef-
fectively exploit inter-view correlation regardless of the CS image-acquisition
and recovery framework used.

4.2 Multistage Reconstruction of Multiview Images

In the previous section, we described the CS recovery of a single frame within a
multiview dataset, given a disparity-compensated prediction made from adja-
cent views. It was implicitly assumed that these left and right views themselves
had already been reconstructed via some process. However, as these left and
right views are also recovered from CS measurements, the performance of the
recovery of any given view is dependent upon the quality of the views used as
references. The higher the distortion present in the reference frames, the higher
the distortion will be in the recovery of the given view of current interest.

To reconstruct the entire multiview dataset from individual CS measure-
ments of each of the constituent frames, we propose a multistage recovery
process. In the first, or initial, stage, each image in the multiview set is re-
constructed individually from the received set of measurements using a CS
recovery method. In the second stage (the “basic” stage), each image is recon-
structed using the DC-CS procedure of Fig. 2 with the left and right reference
views as obtained from the preceding initial stage.

Subsequently, one or more (e.g., R) refinement stages are performed. A
refinement stage of the algorithm is simply the repetition of the second phase
of the basic stage (i.e., the phase wherein DE/DC-based prediction is used for
triggering the residual), in which the references used in the current DE/DC
are given by the recoveries obtained at the previous stage (i.e., basic stage,
for the first refinement or the last refinement level, for subsequent refinement
stages). The stages could conceivably be repeated until there is no significant
difference between consecutive passes; however, in our experimental framework
described in Section 6, we consider up to R = 4 refinement stages in order to
minimize the overall computational complexity of the reconstruction.

The pseudo-code for the basic and refinement stages is described in Al-
gorithms 2–3 (Algorithm 1 describes only the prediction/residual based re-
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construction part, used in both basic and refinement stages). Additionally,
Algorithm 4 describes how each stage is used together to form the full DC-CS
multiview image recovery system. In edge cases where bidirectional reference
views are not available for DE/DC or interpolation, unidirectional references
may be substituted. In Algorithms 1–4, the notation {·} when used in con-
junction with index d refers to a set of values over the index d. For example,
{yd} refers to the set of measurements at each view, {y1, y2, . . . , yNumV iews}.

Algorithm 1 Prediction-based View Recovery
Input: x̂0

d, yd,Φd, x̂d−1, x̂d+1,K, ε
r̂0d = 0
for all k ∈ {1, 2, . . . ,K} do

DV k
d−1

= DisparityEstimation(x̂k−1
d , x̂d−1)

DV k
d+1

= DisparityEstimation(x̂k−1
d , x̂d+1)

xk
p = DisparityCompensation(x̂d−1, x̂d+1, DV k

d−1
, DV k

d+1
)

r̂kd = CSRecovery(yd − Φdx
k
p ,Φd)

x̂k
d = x̂k−1

d + r̂kd
if ||r̂kd ||

2
2 − ||r̂k−1

d ||22 < ε then

return x̂k
d

end if
end for
return x̂K

d

Algorithm 2 Basic Stage Recovery
Input:

{

x̂init
d

}

, {yd} , {Φd} ,K, ε
for all d ∈ {1, 2, . . . , NumV iews} do

xinit
p,d = ImageInterpolation(x̂init

d−1
, x̂init

d+1
)

r̂d = CSRecovery(yd − Φdx
init
p,d ,Φd)

x̂d = x̂init
p,d + r̂d

x̂basic
d = PredictionViewRecovery(x̂d, yd,Φd, x̂

init
d−1

, x̂init
d+1

,K, ε)
end for
return {x̂basic

d }

Algorithm 3 Refinement Stage Recovery

Input:
{

x̂basic
d

}

, {yd} , {Φd} , R,K, ε

x̂0
d = x̂basic

d , ∀ d
for all i ∈ {1, 2, . . . , R} do

for all d ∈ {1, 2, . . . , NumV iews} do

x̂i
d = PredictionViewRecovery(x̂i−1

d , yd,Φd, x̂
i−1
d−1

, x̂i−1
d+1

,K, ε)
end for

end for
return {x̂R

d }
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Algorithm 4 Full DC-CS Recovery
Input: {yd} , {Φd} , R,K, ε
x̂init
d = CSRecovery(yd,Φd), ∀ d

{x̂basic
d } = BasicStage({x̂init

d }, {yd}, {Φd},K, ε)

{x̂refine
d } = RefinementStage({x̂basic

d }, {yd}, {Φd}, R,K, ε)

return {x̂refine
d }

We note that, for each view, a different random measurement matrix Φd

is used, and the information retained in the different projections has a high
probability of being complementary. Knowing that each view is highly corre-
lated, the performance gains from the refinement iterations are also due to
complementary, highly correlated information along the disparity axis.

4.3 Reconstruction of Multiview Video Sequences

The multistage DC-CS procedure described above reconstructs an entire set
of multiview images; however, the algorithm can be easily extended for use
with multiview video in which we have multiple time samples of each view.
To do so, we perform predictions not only along the disparity (or view) axis,
but also along the temporal axis via ME/MC, as illustrated in Fig. 3. The
algorithm is partitioned into three phases, much like DC-CS for multiview
images. In the initial stage, each frame in each view in the multiview video is
reconstructed individually from the received set of measurements using a CS
recovery method.

In the second stage, for each image xt
d at time t and view d, a prediction

is created by directionally interpolating the CS reconstructions of the closest
frames in both temporal and disparity directions, using the procedure in [17]
for this directional interpolation, applied twice (once on the temporal direction,
once on the disparity axis). These four neighboring views/frames—xt

d−1, x
t−1
d ,

xt
d+1, and xt+1

d —are first spatially lowpass filtered, then a classical forward
block-matching DE or ME is performed between them, which is further refined
in order to obtain a bidirectional view/temporal interpolation.

The initial predictor xinit
p used for the image compensation is obtained by

averaging the interpolations on temporal and disparity axes; i.e.,

xinit
p = 0.5 · ImageInterpolation(x̂t−1

d , x̂t+1
d ) +

0.5 · ImageInterpolation(x̂t
d−1, x̂

t
d+1).

(11)

Next, we compute the residual between the measurements and the projec-
tion of the predicted frame; i.e:

r = ytd − Φt
dx

init
p . (12)

This residual in the measurement domain is then reconstructed using CS (i.e.,
r̂ = CSRecovery(r,Φt

d)) and added back to the prediction to generate a recon-
struction, x̂t

d = r̂ + xinit
p .
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x̂t
d is further refined in the basic stage by calculating fields of disparity

vectors, (DV t
d−1, DV t

d+1), and temporal motion vectors, (MV t−1
d ,MV t+1

d ).
These vectors then drive the compensation to form both view and temporal
predictions of the current frame from the neighboring frames. The final pre-
diction xp (i.e., using DE/DC and ME/MC) is obtained by averaging these
four predictions (as in (13)), and the procedure is repeated.

xp =
1

4
[MC(x̂t−1

d ,MV t−1
d ) +MC(x̂t+1

d ,MV t+1
d ) +

DC(x̂t
d−1, DV t

d−1) +DC(x̂t
d+1, DV t

d+1)].
(13)

Similarly to the DC-CS phase used for the reconstruction of the multi-
view images, in the “basic” stage the quality of x̂t

d is successively improved
at each iteration by refining both the motion and disparity vectors at each
step, producing better predictions and therefore more compressible residuals
which are more accurately recovered. For reducing the complexity associated
to this iterative recovery process, we iterate the xt

d reconstruction (keeping
the references unchanged) three times in our implementation framework. Note
however that the residual energy difference criterion in (10) can be used for
stopping the iteration process.

Subsequently, one or more refinement stages are performed. A refinement
stage of the algorithm is simply the repetition of the basic stage as described
above with the results from the second stage substituted for the references used
to drive the compensated-CS reconstruction. The stages could conceivably be
repeated until there is no significant difference between consecutive passes;
however, as for the multiview image sets, we use only four refinement stages.

5 Other Approaches to CS Reconstruction of Multiview Imagery

To the best of our knowledge, there have been only several approaches pro-
posed specifically in prior literature for the CS reconstruction of multiview
images, and none for multiview video other than our own preliminary work in
[13]. The most common approach is to assume that each image of the multi-
view set has been sampled via a CS measurement process independently of the
other images (as we have done in our DC-CS framework); the reconstruction
process then attempts to recover all the images of the multiview set jointly,
exploiting the sparsity common to the disparate views.

For example, [22] reconstructs the multiview image set jointly, enforcing
sparsity not only in each image separately but also in the view-to-view differ-
ence images between neighboring views. [9] adopts a somewhat similar strategy
of joint reconstruction, except that the correlation between neighboring views
is captured in a model more sophisticated than a simple sparse difference
image. Specifically, [9] represents neighboring-view correlation with a local
geometric transformation over an overcomplete structured dictionary. Joint
reconstruction is also central to [26, 38] wherein the view-to-view correlation
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is modeled by requiring the reconstructed views to lie along a low-dimensional
manifold.

The joint reconstruction proposed in [9, 22, 26, 38] is problematic as the
computation burdens are likely to be significant, particularly so as the num-
ber of views increases. Indeed, [9, 22] consider the reconstruction of multiview
datasets with only one to three different views. [26, 38] also suffer from the
burden of having to formulate an explicit model for the low-dimensional man-
ifold describing the multiview set. While [26, 38] primarily focus on the relative
simple “far-field” problem of overlapping fields of view of a single large im-
age, the more general multiview scenario involving parallax and occlusion is
significantly more difficult to handle in practice. While [26] suggests that a
“plenoptic manifold” may accommodate such general “near-field” problems,
it is far from clear that such an approach is feasible in practice.

As the number of prior methods designed specifically for multiview imagery
is somewhat limited, the similar problem of CS reconstruction of video has
received more attention in recent literature. A number of algorithms for video
CS reconstruction were developed for the particular case of dynamic magnetic
resonance imagery (MRI). This type of image sequence tends to have less
motion, and the motion tends to be less of a strictly translational nature, than
does video acquired from natural photographic scenes. However, dynamic-MRI
algorithms may be better suited to the multiview scenario in which consecutive
views differ primarily in disparity due to a changing viewpoint. Initial work
adopted the volumetric reconstruction employed originally as in [39, 40]—for
example, [14] reconstructs a dynamic MRI volume using a temporal Fourier
transform coupled optionally with a spatial wavelet transform as a 3D sparsity
basis.

However, given the computational issues with reconstructing volumes (sim-
ilar to those surrounding joint multiview reconstruction), most CS reconstruc-
tions for video have focused on frame-based recovery that exploits the fact that
successive frames are strongly correlated. Various strategies have been adopted
to handle frame-to-frame correlation. For example, Vaswani et al. [24, 28, 35–
37] have proposed a variety of related approaches for the CS reconstruction of
dynamic MRI data. Fundamental to several of these techniques [24, 28, 36] is
the general strategy of residual reconstruction from a prediction of the current
frame as in (5); the key difference from the work proposed here is that, rather
than using a ME/MC- or DE/DC-based prediction, Vaswani et al. employ
a least-squares [36] or Kalman-filtered [28] prediction. These predictions are
driven by an explicit sparsity pattern for the current frame; the techniques
attempt to track this sparsity pattern as it evolves from frame to frame. It
is assumed that the sparsity pattern evolves slowly over time, an assumption
that may not hold in general video with arbitrary object motion. However, the
“Modified-CS-Residual” algorithm of [24] is a prominent benchmark in the lit-
erature for gauging CS-reconstruction performance for not only dynamic MRI
but also video as well.

Another reconstruction algorithm driven by prediction residuals was con-
sidered in [18, 19]. This algorithm, called k-t FOCUSS in [18], assumes that
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there exist one or two key frames obtained through some separate means,
and then CS reconstruction is driven by residuals between each intervening
non-key frame and a block-based bidirectional motion-compensated predic-
tion from each of the key frames (or a single unidirectional prediction in the
event that only one key frame is available).

Although there exist a number of other CS reconstruction algorithms for
video in the literature, none of these other than k-t FOCUSS and Modified-
CS-Residual have, to our knowledge, implementations readily available at the
time of this writing; the same can be said for all the existing algorithms de-
signed specifically for multiview imagery. As a consequence, in the experi-
mental results of the next section, we focus on comparing DC-BCS-SPL to
k-t FOCUSS and Modified-CS-Residual as well as several straightforward “in-
traframe” strategies that reconstruct each view independently.

6 Experimental Results

In the following, we evaluate the performance of the proposed prediction-based
reconstructions for both multiview image sets and multiview video sequences.

6.1 Multiview Images

In order to observe the effectiveness of DC-CS recovery, we first evaluate its
performance at each stage of reconstruction - i.e., at the initial stage, at the
basic stage, and at the refinement stage, as defined in Section 4.2.

In our experiments, we test two versions of DC-CS recovery—DC-BCS-SPL
and DC-TV—which make use of the BCS-SPL1 and TV-AL32 implementa-
tions of image recovery, respectively. We note that BCS-SPL and TV-AL3
correspond to two different approaches to CS measurement—BCS-SPL relies
on an explicitly defined block-based projection matrix, while TV-AL3 makes
use of global, functionally generated SRMs [16, 29] for projection. For DC-
BCS-SPL, we use a dual-tree discrete wavelet transform (DDWT) [20] with
six levels of decomposition for the sparse representation basis, Ψ ; we note that
the performance of the DDWT within the BCS-SPL framework was found to
be among the best of the transforms investigated in [25]. For BCS sampling,
a block size of 64 × 64 pixels is used. Different from [13] wherein a simple
block-based approach is used to calculate the DE/DC view predictions, here
we use the optical-flow implementation3 of [23]. It should be noted that, due to
the variation in reconstruction quality that results from the random nature of
CS measurement, all results are averaged over 5 independent trials. For mul-
tiview image data, we use the sample multiview images from the Middlebury
stereo-image database4. We consider grayscale versions of the first five views

1 http://www.ece.msstate.edu/~fowler/BCSSPL
2 http://www.caam.rice.edu/~optimization/L1/TVAL3/
3 http://people.csail.mit.edu/celiu/OpticalFlow/
4 http://cat.middlebury.edu/stereo/data.html
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of each multiview image set5. As the BCS-SPL recovery is block-based, the
image resolution should be a multiple of the BCS sampling block, therefore
the views are further resized to 512× 512 pixel resolution.

In this experimental framework, we evaluate reconstruction performance
in terms of peak signal-to-noise ratio (PSNR) obtained for a range of sub-
rates, M/N , with each view of the multiview dataset being acquired using
the same subrate; we report the average PSNR obtained across all views for
each multiview dataset. Detailed results are given for both the “Bowling”
and “Baby” datasets in Table 1. In this table, we see that the incorporation
of DE/DC-based prediction into the reconstruction process, as it occurs in
the basic stage of Algorithm 2, provides a significant increase in reconstruc-
tion quality as opposed to the independent reconstruction of each view (the
initial stage). Furthermore, each refinement stage (i.e., increasing R in Algo-
rithm 3) further improves the reconstruction quality, with more pronounced
gains for higher subrates. As mentioned in Section 4.2, in our framework, we
have considered R = 4 refinement stages. It can be observed from Table 1
that, after the fourth refinement iteration, only small gains in performance
are obtained. This empirical observation allows us to decrease reconstruction
time by halting refinement at this point. Additionally, it can be seen that the
DC-TV reconstruction offers the better reconstruction accuracy in comparison
with DC-BCS-SPL at every recovery stage. These performance gaps can be
attributed to the power of the TV prior for the recovery of natural images,
which can provide a much more accurate initial recovery. With such a starting
point, increased performance is observed at each stage.

We now present a comprehensive comparison between several CS recon-
struction algorithms for multiview images. We compare the multistage DC-
CS reconstruction proposed in Section 4 to two prominent CS reconstruc-
tion algorithms, Modified-CS-Residual [37] and k-t FOCUSS [18, 19], both of
which we have described previously in Section 5. As used with multiview im-
ages, k-t FOCUSS uses iterative recovery with DE/DC from non-key frames
from the neighboring key frames. On the other hand, Modified-CS-Residual
does not employ DE/DC but rather attempts to explicitly track the sparsity
pattern frame to frame. We use the implementations of k-t FOCUSS6 and
Modified-CS-Residual7 available from their respective authors. Although both
k-t FOCUSS and Modified-CS-Residual were originally designed for the recon-
struction of dynamic MRI data, they both constitute benchmark algorithms
for the reconstruction of multiview imagery as well as. Both techniques, be-
ing oriented toward dynamic MRI, feature frame-by-frame CS measurement
driven by a 2D full-frame Fourier transform applied identically to each frame
with low-frequency coefficients benefiting from a higher subrate. The subrate
for all frames (key and non-key) for k-t FOCUSS is identical, contrary to its
typical use with video in which key frames have increased subrate.

5 Five 555×626×3 multiview image sets: Aloe, Baby3, Bowling1, Plastic, and Monopoly
6 http://bisp.kaist.ac.kr/research_02.htm
7 http://home.engineering.iastate.edu/~luwei/modcs/
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Finally, we compare to independent view-by-view, or “intraview”, recon-
struction for each of the multiview datasets. We consider the multiscale (MS)
variant of BCS-SPL originally proposed in [12]; in the results here, we refer
to it as “Intraview MS-BCS-SPL.” We also consider the TV reconstruction
of each view, referred to as “Intraview TV” in the results. The MS-BCS-SPL
utilizes block-based CS measurement in the wavelet domain with blocks of size
16× 16, while intraview TV uses a full-frame block-Hadamard SRM [16].

Figs. 5 and 6 illustrate the performance of the various reconstructions
for different subrates; more complete results are found in Table 2. As it can
be seen in the above mentioned figures and tables, DC-TV almost always
outperforms the other techniques considered, sometimes by as much as 10–
12 dB. The combination of a strong CS image-recovery technique, such as TV,
and our iterative procedure of DE/DC prediction and residual recovery offers
superior reconstruction accuracy.

Although none of the implementations have been particularly optimized for
execution speed, we present reconstruction times for the algorithms in Table 3.
Here, we measure the average length of time required to recover one frame out
of the multiview dataset.

6.2 Multiview Video

For multiview video, we consider the case in which each frame within each
view of a multiview video sequence has same subrate. The DE/DC prediction
across views within the multiview video sequence is identical to that used
for multiview image recovery, i.e., the optical-flow implementation proposed
in [23]. However, to handle large motion discrepancies between frames of the
multiview sequence, block-based ME/MC using full-search ME with a block
size of 16× 16 and a search window of 32× 32 is employed temporally.

Figs. 7–9 present the performance at each of the three stages of recon-
struction over various subrates. Three 256 × 192 grayscale multiview video
sequences are used, namely, “Book Arrival,” 8 “Ballet,” and “Break Dancer”
9. The simulations are done, for each of these sequences, on the first 5 views
and first 5 frames within each view, thus a total of 25 frames per multiview
video sequence are used. As before, DE/DC coupled with ME/MC in the DC-
CS reconstruction occurring in the basic stage improves reconstruction quality
dramatically over the independent reconstruction in the initial stage, and the
refinement stage produces even further quality improvement. As in the case of
multiview image sequences, DC-TV provides superior PSNR as compared to
DC-BCS-SPL for multiview video recovery. Full results for video recovery are
given in Table 4.

8 Provided courtesy of Fraunhoffer HHI.
9 The “Ballet” and “Break Dancer” multiview video sequences are available, courtesy

of Microsoft Research, from http://research.microsoft.com/en-us/um/people/sbkang/
3dvideodownload/
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7 Conclusions

In this paper, we investigated the CS recovery of multiview images as well
as multiview video sequences. Central to this reconstruction process was the
creation of predictions of the current view from adjacent views via DE and
DC, and, in the case of multiview video, predictions from temporally neighbor-
ing frames via ME and MC. These DE/DC- and ME/MC-based predictions
were used in a CS reconstruction of a residual rather than the frame directly.
Experimental results displayed a significant increase in performance when us-
ing signal predictions in comparison to recoveries which merely reconstruct
each image independently from one another. Furthermore, a significant per-
formance advantage was seen for the proposed techniques in comparison to
several benchmark multiple-frame CS reconstruction techniques, thus demon-
strating the effectiveness of the improvements we propose in this work: TV
view, and residual, reconstruction combined with DE/DC based on optical
flow.
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Fig. 1 Decay of the magnitudes of the transform coefficients for frame 1 of the “Foreman”
video sequence as compared to that of the motion-compensated residual between frames 1
and 0. ME/MC is based on 16 × 16 blocks with quarter-pixel accuracy over a window of
size 15× 15 pixels; ME/MC is performed between the original frames of the sequence. The
transform is a 4-level biorthogonal 9/7 DWT.
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Fig. 2 The DC-CS basic stage reconstruction procedure for a single view.
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Fig. 3 The multistage DC-CS reconstruction framework using ME/MC and DE/DC for
multiview video.
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Fig. 4 Comparison between DC-BCS-SPL reconstruction using optical flow (OF) and block
matching (BM) to accomplish DE/DC for the “Baby” multiview-image dataset.
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Table 1 PSNR performance (in dB) at each CS reconstruction stage of the proposed
method and for two multiview image datasets

Subrate
Algorithm 0.05 0.1 0.2 0.3 0.4 0.5

Bowling
DC-TV
7th Refinement 38.177 41.968 47.208 50.148 52.398 53.863
6th Refinement 38.160 41.970 47.200 50.140 52.391 53.860
5th Refinement 38.180 41.977 47.180 50.113 52.315 53.862
4th Refinement 38.135 41.916 47.034 50.092 52.224 53.864
3rd Refinement 38.086 41.717 46.764 49.909 52.133 53.803
2nd Refinement 37.824 41.447 46.331 49.534 51.879 53.617
1st Refinement 37.343 40.892 45.694 48.997 51.466 53.377
Basic 36.084 39.480 44.037 47.323 49.986 52.137
Initial 34.489 37.477 41.449 44.557 47.111 49.517
DC-BCS-SPL
7th Refinement 32.341 35.963 40.975 44.700 47.683 50.036
6th Refinement 32.281 35.855 40.919 44.695 47.681 50.038
5th Refinement 32.196 35.627 40.831 44.680 47.679 50.040
4th Refinement 32.003 35.240 40.687 44.605 47.677 50.039
3rd Refinement 31.738 34.988 40.392 44.508 47.654 50.064
2nd Refinement 31.352 34.581 39.997 44.204 47.409 49.887
1st Refinement 30.695 33.958 38.689 43.092 46.575 49.301
Basic 29.912 33.307 37.662 41.239 44.171 46.722
Initial 29.094 32.862 36.304 38.916 41.020 43.129

Baby
DC-TV
7th Refinement 34.416 37.974 43.263 46.763 49.882 51.934
6th Refinement 34.344 37.981 43.228 46.758 49.838 51.870
5th Refinement 34.270 37.907 43.153 46.711 49.719 51.708
4th Refinement 34.102 37.745 42.933 46.589 49.430 51.547
3rd Refinement 33.658 37.305 42.389 46.197 49.072 51.391
2nd Refinement 33.230 36.678 41.699 45.431 48.492 50.977
1st Refinement 32.553 35.833 40.599 44.376 47.494 50.187
Basic 31.376 34.273 38.543 41.984 45.033 47.838
Initial 29.970 32.237 35.609 38.374 40.934 43.474
DC-BCS-SPL
7th Refinement 30.013 34.729 38.953 42.193 44.927 47.622
6th Refinement 29.998 34.731 38.964 42.192 44.930 47.609
5th Refinement 30.001 34.672 38.958 42.158 44.905 47.563
4th Refinement 29.979 34.398 38.901 42.099 44.849 47.368
3rd Refinement 29.850 34.199 38.723 41.968 44.734 47.289
2nd Refinement 29.427 33.824 38.335 41.591 44.371 46.952
1st Refinement 29.006 33.223 37.558 40.782 43.539 46.187
Basic 28.079 32.065 35.794 38.598 41.060 43.426
Initial 26.854 30.746 33.603 35.685 37.541 39.307
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Fig. 5 Performance of various CS reconstruction algorithms for the “Bowling” multiview-
image dataset.
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Fig. 6 Performance of various CS reconstruction algorithms for the “Baby” multiview-
image dataset.
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Table 2 PSNR performance (in dB) of various CS reconstruction algorithms for several
multiview datasets

Subrate
Algorithm 0.1 0.2 0.3 0.4 0.5

Aloe
Multistage DC-TV 29.0 33.0 36.8 40.4 44.1
Multistage DC-BCS-SPL 28.6 32.4 35.3 38.0 40.7
Modified-CS-Residual 25.3 27.3 29.1 30.9 32.8
k-t FOCUSS 22.3 24.5 27.7 29.8 32.1
Intraview MS-BCS-SPL 27.8 30.1 33.0 33.7 34.5
Intraview TV 25.7 27.6 29.2 30.7 32.4

Baby
Multistage DC-TV 37.7 42.9 46.6 49.4 51.5
Multistage DC-BCS-SPL 34.4 38.9 42.1 44.8 47.4
Modified-CS-Residual 28.8 31.4 33.3 35.5 37.7
k-t FOCUSS 25.5 27.6 31.0 33.7 36.4
Intraview MS-BCS-SPL 33.3 37.0 40.0 41.3 42.6
Intraview TV 32.2 35.5 38.4 41.1 43.7

Bowling
Multistage DC-TV 41.9 47.0 50.1 52.2 53.9
Multistage DC-BCS-SPL 35.2 40.7 44.6 47.7 50.0
Modified-CS-Residual 28.0 30.7 32.5 34.9 37.1
k-t FOCUSS 25.8 28.1 31.8 34.8 37.3
Intraview MS-BCS-SPL 33.2 37.2 40.0 41.5 42.9
Intraview TV 33.0 36.3 39.1 41.6 44.3

Monopoly
Multistage DC-TV 35.2 41.7 46.3 49.4 51.8
Multistage DC-BCS-SPL 30.5 35.5 39.5 43.0 46.1
Modified-CS-Residual 25.9 27.9 29.6 31.7 33.8
k-t FOCUSS 24.4 26.3 29.4 31.6 34.5
Intraview MS-BCS-SPL 29.3 33.1 35.5 38.0 40.2
Intraview TV 29.8 35.0 39.5 43.7 47.6

Plastic
Multistage DC-TV 46.6 51.5 53.7 55.2 56.7
Multistage DC-BCS-SPL 38.1 44.5 48.9 52.0 54.1
Modified-CS-Residual 29.8 32.9 34.9 37.6 40.0
k-t FOCUSS 28.2 30.3 34.1 36.9 39.8
Intraview MS-BCS-SPL 36.5 41.5 45.2 49.1 52.4
Intraview TV 43.1 48.8 52.7 55.6 57.9

Table 3 Reconstruction time in seconds per view (spv)

Algorithm Time (spv)
Intraview TV 3
Intraview MS-BCS-SPL 43
k-t FOCUSS 79
Multistage DC-BCS-SPL 190
Multistage DC-TV 207
Modified-CS-Residual 1105
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Fig. 7 Reconstruction performance for the “Ballet” multiview video.
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Fig. 8 Reconstruction performance for the “Book Arrival” multiview video.
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Fig. 9 Reconstruction performance for the “Break Dancer” multiview video.



Title Suppressed Due to Excessive Length 29

Table 4 PSNR performance (in dB) at each CS reconstruction stage of the proposed
method for several multiview video datasets

Subrate
Algorithm 0.05 0.1 0.2 0.3 0.4 0.5

Book Arrival
DC-TV
4th Refinement 29.406 33.066 39.597 44.517 47.903 50.438
3rd Refinement 29.082 32.771 39.107 44.083 47.607 50.269
2nd Refinement 28.650 32.293 38.405 43.399 47.083 49.932
1st Refinement 28.070 31.546 37.345 42.255 46.057 49.146
Basic 27.215 30.341 35.526 40.117 43.892 47.154
Initial 25.956 28.739 32.735 36.379 39.594 42.642
DC-BCS-SPL
4th Refinement 21.004 27.301 31.791 34.509 37.158 39.855
3rd Refinement 20.919 27.091 31.462 34.108 36.673 39.291
2nd Refinement 20.813 26.828 31.037 33.583 36.030 38.536
1st Refinement 20.663 26.488 30.473 32.880 35.158 37.502
Basic 20.422 26.017 29.676 31.868 33.899 36.005
Initial 19.721 25.196 28.301 30.106 31.723 33.416

Breakdancer
DC-TV
4th Refinement 32.902 35.891 40.113 43.070 45.381 47.395
3rd Refinement 32.858 35.989 40.128 43.057 45.350 47.395
2nd Refinement 32.612 35.982 40.083 42.971 45.315 47.358
1st Refinement 32.018 35.732 39.940 42.881 45.242 47.309
Basic 30.773 34.772 39.239 42.305 44.830 46.969
Initial 28.852 32.755 37.157 40.192 42.831 45.200
DC-BCS-SPL
4th Refinement 26.098 31.184 35.449 38.549 41.055 43.249
3rd Refinement 25.945 31.046 35.517 38.600 41.076 43.254
2nd Refinement 25.747 30.787 35.457 38.538 41.013 43.185
1st Refinement 25.484 30.386 35.165 38.278 40.766 42.980
Basic 25.133 29.773 34.464 37.486 39.950 42.190
Initial 24.593 28.731 32.786 35.435 37.614 39.685

Ballet
DC-TV
4th Refinement 31.784 34.790 39.613 43.206 46.050 48.441
3rd Refinement 31.696 34.744 39.532 43.173 46.036 48.431
2nd Refinement 31.478 34.574 39.400 43.048 45.939 48.396
1st Refinement 31.096 34.230 39.104 42.841 45.753 48.244
Basic 30.285 33.394 38.221 42.107 45.178 47.739
Initial 28.907 31.880 35.984 39.797 42.980 45.536
DC-BCS-SPL
4th Refinement 25.507 29.899 33.372 35.425 37.335 39.523
3rd Refinement 25.391 29.817 33.331 35.340 37.285 39.436
2nd Refinement 25.247 29.668 33.306 35.324 37.266 39.366
1st Refinement 25.062 29.441 33.145 35.205 37.091 39.145
Basic 24.811 29.060 32.731 34.795 36.576 38.525
Initial 24.442 28.260 31.607 33.574 35.151 36.893

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.


